Skip to main content
Log in

Determination of solid state basicity of rare earth oxides by thermal analysis of their carbonates

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Relative basicities of the rare earth oxides (M2O3) were determined from the measurement by TG - DTA of decomposition temperatures of the carbonates of Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb. From the comparison of this data with that published by Head and Holley, a sequence of basicity has been proposed for the entire range of rare earth oxides. This sequence in decreasing basicities is: La > Pr ~ Nd > Sm > Gd ~ Eu > Tb ~ Ho ~ Er > Dy ∼ Tm ∼ Yb ∼ Lu > Ce. Basicity of rare earth oxides, therefore, does not decrease progressively with an increase in atomic number.

Zusammenfassung

Die relative Basizität der Seltenerdenoxide (M2O3) wurde mittels der durch TG-DTA-Untersuchungen festgestellten Zersetzungstemperaturen der Karbonate folgender Metalle bestimmt: Ce, Pr, Sm,Eu, Gd, Tb, Dy, Ho, Er und Yb. Aufgrund eines Vergleiches der hier ermittelten Daten mit denen von Head und Holley wird für die Basizität der Seltenerdenoxide folgende Reihenfolge aufgestellt: La > Pr ∼ Nd > Sm > Gd ∼ Eu > Tb ∼ Ho ∼ Er > Dy ∼Tm∼ Yb ∼ Lu > Ce. Wie ersichtlich nimmt die Basizität der Seltenerdenoxide mit ansteigender Ordnungszahl nicht progressiv ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Keller and J. H. Bhasin., J. Catal., 73 (1982) 9.

    Google Scholar 

  2. T. Ito and J. H. Lunsford, Nature, 314 (1985) 721.

    Google Scholar 

  3. C. Lin, J. Wong and J. H. Lunsford, J. Catal., 111 (1988) 302.

    Google Scholar 

  4. K. Otsuka, K. Jino and A. Morikawa, J. Catal., 100 (1986) 353.

    Google Scholar 

  5. K. Otsuka, K. Jino and A. Morikawa, Chem. Lett., (1985) 499.

  6. K. Tanabe in Catalysis Science and Technology, J. R. Anderson and M. Boudait (eds.), chapter 5, Vol.2, Springer -Verlag, 1981.

  7. P. A. Hathway and M. E. Davis, J. Catal., 116 (1989) 263.

    Google Scholar 

  8. H. Vinek, H. Noller, M. Ebel and K. Schwarz, J. Chem. Soc. Faraday Trans. I, (1977) 734.

    Google Scholar 

  9. V. A. Sharov and G. V. Bejdenezhnykh, Uspekhi Khemii, 50 (1981) 1197.

    Google Scholar 

  10. J. A. Goldsmith and S. D. Ross, Spectrochim. Acta, 23A (1967) 1909; and the references cited therein.

    Google Scholar 

  11. V. D. Savin, V. N. Sobolev, Z. V. Eremenko and Z. M. Grigoreva, Russ, J. Phys. Chem., 59 (1985) 1432.

    Google Scholar 

  12. I. N. Tselik, V. Ya. Shvartsman and V. D. Fedorenko, Russ. J. Inorg. Chem., 3 (1968) 53.

    Google Scholar 

  13. J. Priess and N. Rainer, Z. Anorg. Allgem. Chem. 131 (1923) 287.

    Google Scholar 

  14. E. L. Head and C. E. Holley, Jr. in Rare Earth Research, II, K. S. Vorres (ed), Gordon and Breach, N.Y., 1964, pp. 51–63.

    Google Scholar 

  15. E. L. Head and C. E. Holley, Jr. in Rare Earth Research III, L. Eyring (ed), Gordon and Breach, N.Y. 1965, pp 707–18.

    Google Scholar 

  16. R. G. Charles, J. Inorg. Nucl. Chem., 27 (1965) 1489.

    Google Scholar 

  17. W. W. Wendlandt and T. G. George, Texas J. Science, 13 (1961) 316.

    Google Scholar 

  18. R. L. N. Sastry, S. R. Yoganarasimhan, P. N. Mehrotra and C. N. R. Rao, J. Inorg. Nucl. Chem., 28 (1966) 1165.

    Google Scholar 

  19. A. N. Christensen, Acta Chem. Scand., 27 (1973) 1835.

    Google Scholar 

  20. M. L. Salutsky and L. L. Quill, J. Am. Chem. Soc., 72 (1958) 3306.

    Google Scholar 

  21. R. P. Turcotte, J. O. Sawyer and L. Eyring, Inorg. Chem., 8 (1969) 238.

    Google Scholar 

  22. D. Touret and F. Queyroux, Revue de Chimie Minerale, 9 (1972) 883.

    Google Scholar 

  23. J. E. Huheey, Inorganic Chemistry, 2nd ed, Harper & Row New York, 1978, p. 35.

    Google Scholar 

  24. CRC Handbook of Chemistry and Physics, 57th edition, 1976–77.

  25. Radiochemistry, MTP International Review of Science, Inorganic Chemistry, Series 1, Vol.8, A. G. Maddock (ed), Butterworths, London, 1972.

  26. N. N. Greenwood and E. Earnshaw, “Chemistry of the Elements”, Pergamon, 1984, p 1436.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research forms part of a larger nationally coordinated program on natural gas conversion conducted in collaboration with the Divisions of Materials Science & Technology and Fuel Technology, and with BHP Melbourne Research Laboratories.

The author is grateful to Dr E. Patsalides of Sydney University for his generous donation of eight rare-earth oxides. The author wishes to thank the colleagues for their contribution to this work: Mr K. Riley and Mr W. Godbeer (chemical analysis), Dr P. F. Nelson and Mr R. Quezada (FTIR analysis), Mr A. Home (XRD analysis), Mr S. P. Chatfield (thermal analysis) and the project leader, Mr R. J. Tyler for his constant encouragement and valuable suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maitra, A.M. Determination of solid state basicity of rare earth oxides by thermal analysis of their carbonates. Journal of Thermal Analysis 36, 657–675 (1990). https://doi.org/10.1007/BF01914518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01914518

Keywords

Navigation