Journal of thermal analysis

, Volume 34, Issue 5–6, pp 1489–1494 | Cite as

Remarks on “A new equation for modelling nonisothermal reactions”

  • J. Zsakó
Note

Abstract

The formula proposed by Agrawal [7] for the approximation of the temperature integral in non-isothermal kinetics is shown to be less accurate than several approximations proposed earlier that are of the same complexity. The domain of applicability of 10 approximate formulae is discussed.

Keywords

Polymer Physical Chemistry Inorganic Chemistry Approximate Formula Nonisothermal Reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zsakó, J. Thermal Anal., 5 (1973) 239.Google Scholar
  2. 2.
    J. Zsakó, in “Thermal Analysis” (Ž, D. Živkovič, ed.) Collection of Papers, Bor, Yugoslavia, 1984, p. 167.Google Scholar
  3. 3.
    C. D. Doyle, J. Appl. Polym. Sci., 5 (1961) 285.Google Scholar
  4. 4.
    J. šesták, Silikaty, 11 (1967) 153.Google Scholar
  5. 5.
    E. Jahnke and F. Embde, “Tables of Higher Functions”, Leipzig, 1960.Google Scholar
  6. 6.
    M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, Dover Publ., New York, 1972.Google Scholar
  7. 7.
    R. A. Agrawal, J. Thermal Anal., 32 (1987) 149.Google Scholar
  8. 8.
    C. D. Doyle, Nature, 207 (1965) 290.Google Scholar
  9. 9.
    M. Balarin, J. Thermal Anal., 12 (1977) 169.Google Scholar
  10. 10.
    P. Murray and J. White, Trans. Brit. Ceram. Soc., 54 (1955) 204.Google Scholar
  11. 11.
    A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.Google Scholar
  12. 12.
    G. I. Senum and R. T. Yang, J. Thermal Anal., 11 (1977) 445.Google Scholar
  13. 13.
    Y. L. Luke, “Mathematical Functions and Their Approximations” Academic Press Inc., New York, 1975, Chapter 13.Google Scholar
  14. 14.
    V. M. Gorbachev, J. Thermal Anal., 8 (1975) 585.Google Scholar
  15. 15.
    R. C. Turner and M. Schnitzer, Soil Sci., 93 (1962) 225.Google Scholar
  16. 16.
    R. C. Turner, I. Hoffmann and D. Chen, Canad. J. Chem., 41 (1963) 243.Google Scholar
  17. 17.
    O. Schlömlich, “Vorlesungen über höheren Analysis”, Braunschweig, 1984, p. 266.Google Scholar
  18. 18.
    C. H. Li, AIChEJ., 31 (1985) 1036.Google Scholar
  19. 19.
    J. Zsakó, J. Thermal Anal., 8 (1975) 593.Google Scholar
  20. 20.
    E. Hastings “Approximations for Digital Computers”, Princeton, 1955.Google Scholar
  21. 21.
    J. R. Biegen and A. W. Czanderna, J. Thermal Anal., 4 (1972) 39.Google Scholar
  22. 22.
    J. Saint-Georges and G. Garnaud, J. Thermal Anal., 5 (1973) 599.Google Scholar
  23. 23.
    R. Chen, J. Thermal Anal., 6 (1974) 585.Google Scholar

Copyright information

© Wiley Heyden Ltd, Chichester and Akadémiai Kiadó, Budapest 1988

Authors and Affiliations

  • J. Zsakó
    • 1
  1. 1.Faculty of Chemical Technology“Babes-Bolyai” UniversityCluj-NapocaRomania

Personalised recommendations