Journal of thermal analysis

, Volume 35, Issue 1, pp 69–76 | Cite as

Phase equilibria in the V2O5-Cr2O3 system

  • J. Walczak
  • E. Filipek


The phase equilibria in the total range of component concentrations in the V2O5-Cr2O3 system up to 1000 °C were studied by means of phase powder diffraction and DTA. Two compounds exist in the system: CrVO4, melting incongruently at 860±5 °C, and Cr2V4O13, which decomposes in the solid state at 640±5 °C to CrVO4(s) and V2O5(s). At 645±5 °C, CrVO4 and V2O5 form a eutectic mixture with the CrVO4 content not exceeding 2% mol.


Polymer Physical Chemistry Inorganic Chemistry Solid State Phase Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Mittels DTA und Pulverdiffraktionsaufnahmen wurde das Phasengleichgewicht des Systems V2O5-Cr2O3 bis 1000 °C im gesamten Konzentrationsbereich untersucht. Innerhalb des Systemes existieren zwei Verbindungen: CrVO4 mit einem inkongruentem Schmelzpunkt bei 860±5 °C und Cr2V4O13, das sich in festem Zustand bei 640±5 °C in CrVO4(s) und V2O5(s) zersetzt. Bei 645±5 °C bilden CrVO4 und V2O5 ein eutektisches Gemisch mit einem maximalen CrVO4-Gehalt von 2 mol%.


Методом DTA и порошкого р ентгенофазового анализа изучено фазо вое равновесие системы V2О5-Cr2О3 до темп ературы 1000° и во всей области концентраци й компонентов. Установлено наличие двух соединений: CrVO4, пла вящегося инконгруэнтно при 860±5° и Cr2V4O13, разлагающегося в твердом состоянии пр и 640±5° до твердых CrVO4 и V2O5, которые при температуре 645±5° об разуют эвтектическу ю смесь с содержанием CrVO4, не превышающим 2 мольных %.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Cirilli, A. Burdese and C. Brisi, M. Italiana 7 (1956) 309.Google Scholar
  2. 2.
    A. Burdese, Ann. Chim. 47 (1957) 797.Google Scholar
  3. 3.
    E. C. Compleston, M. Y. C. Simons and B. Barham, Trans. I. Br. Ceram. Soc. 76 (1977) 68.Google Scholar
  4. 4.
    J. Aminel, D. Colaitis and D. Olivier, C. R. Acad. Sci., Paris 263 (1966) 224.Google Scholar
  5. 5.
    R. C. Kerby and J. R. Wilson, Can. J. Chem. 51 (1973) 1032.Google Scholar
  6. 6.
    S. M. Tsheshnickii, A. A. Fotev and L. L. Surat, Zh. Neorg. Khim. 28 (1983) 2699.Google Scholar
  7. 7.
    G. Lucas, M. Weddle and A. Preece, J. Iron and Steel Inst. 179 (1955) 342.Google Scholar
  8. 8.
    R. N. Pletnev, V. N. Lisson and I. I. Miller, Inst. Khim. Ural. Nauch. Tsents. AN SSSR 35 (1976) 92.Google Scholar
  9. 9.
    D. Olivier and B. Combe, C. R. Acad. Sci., Paris 267 (1968) 877.Google Scholar
  10. 10.
    D. Olivier, C. R. Acad. Sci., Paris, 364 C (1967) 1176.Google Scholar
  11. 11.
    U. Akifumi et al., Nippon Kagaku Kaishi 9 (1981) 1513.Google Scholar
  12. 12.
    L. N. Kurina et al., Kinet. Katal. 11 (1970) 753.Google Scholar
  13. 13.
    Joint Committee of Powder Diffraction File: CrVO4: 16–256; Cr2O3: 6–0504; V2O5: 9–387.Google Scholar
  14. 14.
    D. Olivier and P. Rabette, C. R. Acad. Sci., Paris 265 (1967) 1451.Google Scholar
  15. 15.
    J. Amiel, D. Olivier and M. Dessolin, C. R. Acad. Sci., Paris, 264 (1967) 1045.Google Scholar

Copyright information

© Wiley Heyden Ltd, Chichester and Akadémiai Kiadó, Budapest 1988

Authors and Affiliations

  • J. Walczak
    • 1
  • E. Filipek
    • 1
  1. 1.Institute of Fundamental ChemistryTechnical University of SzczecinSzczecinPoland

Personalised recommendations