Skip to main content
Log in

Analysis of the lattice thermal conductivity and phonon-phonon scattering relaxation rate: Application to Mg2Ge and Mg2Si

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The lattice thermal conductivities of Mg2Ge and Mg2Si have been analysed in the entire temperature range 2–1000 K in the frame of a new expression for the phonon-phonon scattering relaxation rate proposed by Dubey as

$$\tau _{3ph}^{ - 1} = (B_{N,I} + B_{U,I} e^{ - \theta /\alpha T} )g(\omega )T^{m_I (T)} + (B_{N,II} + B_{U,II} e^{ - \theta /\alpha T} )g(\omega )T^{m_{II} (T)}$$

based on the Guthrie classification of the phonon-phonon scattering events, and a very good agreement has been obtained between the calculated and experimental values of the lattice thermal conductivity for both samples in the entire temperature range of the study. The separate percentage contributions due to three-phonon normal and umklapp processes towards the three-phonon scattering relaxation rate have also been studied. The role of the four-phonon processes has been included in the present analysis.

Zusammenfassung

Die thermischen Gitterleitfähigkeiten von Mg2Ge und Mg2Si wurden im ganzen Temperaturbereich von 2 bis 1000 K im Rahmen eines neuen Ausdrucks für die Relaxationsrate der Phonon-Phonon Streuung analysiert, welche von Dubey als

$$\tau _{3ph}^{ - 1} = (B_{N,I} + B_{U,I} e^{ - \theta /\alpha T} )g(\omega )T^{m_I (T)} + (B_{N,II} + B_{U,II} e^{ - \theta /\alpha T} )g(\omega )T^{m_{II} (T)}$$

vorgeschlagen wird, undzwar auf der Guthrie-schen Klassifizierung der Phonon-Phonon Streuung beruhend. Auf diese Weise wurde eine sehr gute Übereinstimmung zwischen den berechneten und experimentellen Werten der thermischen Gitterleitfähigkeit für beide Proben im ganzen Temperaturbereich der Untersuchungen erhalten. Die separaten prozentualen Beiträge, welche den Drei-Phonon Normal- und Umklapp-Prozessen in Richtung der Relaxationsrate der Drei-Phonon-Streuung zuzuschreiben sind, wurden ebenfalls studiert. Die Rolle der Vier-Phonon-Vorgänge wurde in die vorliegende Analyse ebenfalls mit aufgenommen.

Резюме

Для соединений Mg2Ge и Mg2Si в области температур 2–1000 К проведен анализ решеточной теплопро водности на основе но вого выражения для скорос ти релаксации фонон-фононного расс еяния, предложенного Дъюби и основанного на класс ификации Гютри для фонон-фонон ного рассеяния:

$$\tau _{3ph}^{ - 1} = (B_{N,I} + B_{U,I} e^{ - \theta /\alpha T} )g(\omega )T^{m_I (T)} + (B_{N,II} + B_{U,II} e^{ - \theta /\alpha T} )g(\omega )T^{m_{II} (T)}$$

Получено хорошее сов падение между вычисл енными и экспериментальными значениями решеточной теплопро водности для обоих об разцов. Отдельно изучен проц ентный вклад, вносимый трехфононн ыми нормальными проц ессами и процессами переброс а в релаксационную скорость трехфононн ого рассеяния. В предс тавленном анализе включена так же роль четырехфононны х процессов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Callaway, Phys. Rev., 113 (1959) 1046.

    Google Scholar 

  2. M. G. Holland, Phys. Rev., 132 (1963) 2461.

    Google Scholar 

  3. Y. P. Joshi andG. S. Verma, Phys. Rev., B1 (1970) 750.

    Google Scholar 

  4. P. C. Sharma, K. S. Dubey andG. S. Verma, Phys. Rev., B4 (1971) 1306.

    Google Scholar 

  5. K. S. Dubey andG. S. Verma, Phys. Rev., B4 (1971) 4491.

    Google Scholar 

  6. K. S. Dubey andR. H. Misho, J. Thermal Anal., 12 (1977) 223.

    Google Scholar 

  7. M. C. Al-Edani andK. S. Dubey, Phys. Stat. Solidi, (b) 68 (1978) 741.

    Google Scholar 

  8. K. C. Sood, M. A. Singh andG. S. Verma, Phys. Rev., B3 (1971) 385.

    Google Scholar 

  9. V. V. Kasavev, P. V. Tamarin andS. S. Shalyat, Phys. Stat. Solidi, (b) 44 (1971) 525.

    Google Scholar 

  10. Y. P. Joshi, M. D. Tiwari andG. S. Verma, Phys. Rev., B1 (1970) 642.

    Google Scholar 

  11. C. Herring, Phys. Rev., 95 (1954) 954.

    Google Scholar 

  12. P. G. Klemens, Solid State Physics (Edited by F. Sertz and D. Turnbull, Academic Press, Inc. New York) 7 (1958) 1.

    Google Scholar 

  13. P. G. Klemens, Proc. Roy. Soc., London A208 (1951) 108.

    Google Scholar 

  14. P. G. Klemens, Proc. Phys. Soc., London 68 (1955) 1113.

    Google Scholar 

  15. B. K. Agrawal andG. S. Verma, Phys. Rev., 126 (1962) 24.

    Google Scholar 

  16. B. K. Agrawal andG. S. Verma, Physica, 28 (1962) 599.

    Google Scholar 

  17. A. M. Toxen, Phys. Rev., 127 (1961 450.

    Google Scholar 

  18. K. S. Dubey, Phys. Rev., B7 (1973) 2876.

    Google Scholar 

  19. K. S.Dubey and G. S.Verma, B7 (1973) 2879.

  20. M. D. Tiwari, D. N. Talwar andB. K. Agrawal, Solid State Comms., 9 (1971) 995.

    Google Scholar 

  21. J. J. Martin andG. C. Danielson, Phys. Rev., 166 (1968) 879.

    Google Scholar 

  22. R. H. Misho andK. S. Dubey, Ind. J. Pure Appl. Phys., 15 (1977) 48.

    Google Scholar 

  23. C. M. Bhandari andG. S. Verma, Phys. Rev., 138 (1965) A288.

    Google Scholar 

  24. C. M. Bhandari andG. S. Verma, Phys. Rev., 140 (1965) A2101.

    Google Scholar 

  25. M. D. Tiwari andB. K. Agrawal, Phys. Rev., B4, (1971) 4491.

    Google Scholar 

  26. K. S. Dubey, J. Thermal Anal., 20 (1981) 447.

    Google Scholar 

  27. K. S. Dubey, Phys. Stat. Solidi, (b) 102 (1980) 423.

    Google Scholar 

  28. M. G. Holland, Phys. Rev., 134 (1964) 471.

    Google Scholar 

  29. K. S. Dubey, Ind. J. Pure Appl. Phys., 13 (1975) 302.

    Google Scholar 

  30. M. C. Al-Edani andK. S. Dubey, Phys. Stat. Solidi, (b) 87 (1978) K47.

    Google Scholar 

  31. G. L. Guthrie, Phys. Rev., 152 (1966) 801.

    Google Scholar 

  32. G. L. Guthrie, Phys. Rev., B3 (1971) 3373.

    Google Scholar 

  33. K. S. Dubey, J. Thermal Anal., 19 (1980) 263.

    Google Scholar 

  34. I. Pomeranchuk, Phys. Rev., 60 (1941) 820.

    Google Scholar 

  35. I. Pomeranchuk, J. Phys. U. S. S. R., 4 (1941) 259.

    Google Scholar 

  36. I. Pomeranchuk, J. Phys. U. S. S. R., 7 (1941) 197.

    Google Scholar 

  37. Lord Rayleigh, Philos. Mag., 36 (1932) 365.

    Google Scholar 

  38. H. B. G. Casimir, Physica, 5 (1938) 595.

    Google Scholar 

  39. R. Berman, E. F. Simon andJ. M. Jiman, Proc. Roy. Soc. London, A220 (1953) 171.

    Google Scholar 

  40. R. Berman, E. L. Forester andJ. M. Jiman, Proc. Roy. Soc. London, A231 (1955) 130.

    Google Scholar 

  41. J. Callaway andH. C. Baever, Phys. Rev., 120 (1960) 1149.

    Google Scholar 

  42. Y. P. Joshi andG. S. Verma, Physica, 47 (1970) 213.

    Google Scholar 

  43. K. S. Dubey, J. Physique, France, 37 (1976) 265.

    Google Scholar 

  44. K. S. Dubey, Phys. Stat. Solidi, (b) 81 (1977) K83.

    Google Scholar 

  45. K. S. Dubey, Phys. Stat. Solidi, (b) 79 (1977) K119.

    Google Scholar 

  46. K. S. Dubey, Solid Stat. Comms., 23 (1977) 963.

    Google Scholar 

  47. K. S. Dubey andG. S. Verma, Proc. Phys. Soc. Japan, 32 (1971) 1202.

    Google Scholar 

  48. A. F.Saleh, R. H.Misho and K. S.Dubey, Solid. Stat. Comms.

  49. R. M. Samual, R. H. Misho andK. S. Dubey, Current Sc., 46 (1977) 220.

    Google Scholar 

  50. K. S. Dubey, Ind. J. Pure Appl. Phys., 11 (1973) 265.

    Google Scholar 

  51. J. E. Parrott, Phys. Stat. Solidi, (b) 48 (1971) K159.

    Google Scholar 

  52. K. S. Dubey, Phys. Stat. Solidi, (b) 63 (1974) K35.

    Google Scholar 

  53. B. K. Agrawal andG. S. Verma, Phys. Rev., 128 (1962) 603.

    Google Scholar 

  54. K. S. Dubey, J. Phys. Chem. Solidi, 39 (1978) 699.

    Google Scholar 

  55. P. C. Sharma, K. S. Dubey andG. S. Verma, Phys. Rev., B3 (1971) 1985.

    Google Scholar 

  56. P. L. Chung, W. B. Whitten andG. C. Denielson, J. Phys. Chem. Solids, 26 (1965) 1753.

    Google Scholar 

  57. K. S. Dubey, Phys. Rev., B13 (1976) 1836.

    Google Scholar 

  58. K. S.Dubey, Ind. J. Pure. Appl. Phys., 12 (1974).

  59. J. J. Martin, J. Phys. Chem. Solids, 33 (1972) 1139.

    Google Scholar 

  60. W. B. Whitten, P. L. Chung andG. C. Denielson, J. Phys. Chem. Solids, 26 (1975) 49.

    Google Scholar 

  61. K. S. Dubey, J. Thermal Anal., 18 (1980) 35.

    Google Scholar 

  62. R. H. Misho andK. S. Dubey, Ind. J. Phys., A52 (1977) 234.

    Google Scholar 

  63. R. A. H. Hamilton andJ. E. Parrott, Phys. Rev., 178 (1969) 1284.

    Google Scholar 

  64. G. P. Srivastava, Pramana, 1 (1976) 236.

    Google Scholar 

  65. G. P. Srivastava, Phil. Magn., 34, (1976) 795.

    Google Scholar 

  66. K. S. Dubey, Ind. J. Pure Appl. Phys., 15 (1977) 455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to express their thanks to Dr. R. H. Misho for his valuable suggestions. They are also grateful to Dr. A. J. Saleh and Dr. R. A. Rashid for their interest in the present work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awad, A.H., Dubey, K.S. Analysis of the lattice thermal conductivity and phonon-phonon scattering relaxation rate: Application to Mg2Ge and Mg2Si. Journal of Thermal Analysis 24, 233–260 (1982). https://doi.org/10.1007/BF01913678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01913678

Keywords

Navigation