Journal of thermal analysis

, Volume 36, Issue 7–8, pp 2455–2464 | Cite as

Foundations of thermo-dielectrical analysis

II. Calculation of the dielectric susceptibility of dehydrated homoionic zeolites
  • R. Roque-Malherbe
  • M. Hernandez-Velez


The dielectric susceptibility of dehydrated homoionic zeolites was calculated by using a cation hopping model consisting of classical jumps over a barrier. The calculation method was based on determination of the response function of the homoionic dehydrated zeolite under transient excitation. The dielectric susceptibility expression obtained was compared with experimental dielectric spectra at different temperatures and the activation energy for cationic diffusion in the zeolites tested was also calculated. The results were within the range of values reported for cationic migration in the solid state. Further, there is a clear difference between the activation energies of Na and Ca diffusion and this fact forms a quantitative basis for the explanation of the thermodielectric thermograms of homoionic sodium and calcium zeolites and promote the understanding of the role of cationic polarization and cationic migration in thermodielectric analysis.


Activation Energy Zeolite Dielectric Spectrum Natrium Quantitative Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unter Anwendung eines Kationen-Hüpfmodelles, bestehend aus klassischen Hürdensprüngen, wurde die dielektrische Suszeptibilität von dehydratierten homoionischen Zeolithen berechnet. Die Berechnungsmethode basiert auf der Bestimmung der Antwortfunktion des dehydratierten homoionischen Zeolithen während einer vorübergehenden Anregung. Der ermittelte Ausdruck für die dielektrische Suszeptibilität wurde mit experimentellen dielektrischen Spektren bei verschiedenen Temperaturen verglichen, weiterhin wurde die Aktivierungsenergie für die Diffusion der Kationen in die untersuchten Zeolithe berechnet. Die Ergebnisse liegen in dem Wertebereich, der in der Literatur für die Kationenwanderung im festen Zustand beschrieben wurde. Es besteht ferner ein eindeutiger Unterschied zwischen der Aktivierungsenergie von Na- bzw. Ca- Diffusion. Dies bietet eine quantitative Grundlage zur Erläuterung thermodielektrischer Thermogramme von homoionischen Natrium- und Calciumzeolithen und hilft, die Rolle von Kationenpolarisation und -Wanderung in der thermodielektrischen Analyse besser zu verstehen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Roque-Malherbe, A. Rodriguez, M. Hernandez-Velez and A. Montes, Patent Certificate No. 21746 ONITEM Academy of Sciences of Cuba.Google Scholar
  2. 2.
    R. Roque-Malherbe and M. Hernandez-Velez, J. Thermal Anal., submitted for publication.Google Scholar
  3. 3.
    R. Roque-Malherbe and A. Montes, J. Thermal Anal., 31 (1986) 517.Google Scholar
  4. 4.
    M. Carreras, R. Roque-Malherbe and C. de las Pozas, J. Thermal Anal., 34 (1988) 1271.Google Scholar
  5. 5.
    R. Roque-Malherbe, C. de las Pozas and M. Carreras, J. Thermal Anal., 32 (1987) 1271.Google Scholar
  6. 6.
    W. Dietrich, P. Fulde and I. Peschel, Adv. Phys., 29 (1980) 527.Google Scholar
  7. 7.
    H. Miura and H. Imai, Report Res. Lab. Eng. Mater., 3 (1978) 88.Google Scholar
  8. 8.
    W. H. Hauffe and H. Gunser, Z. Phys. Chem. Chemie Neue Folge, 104 (1977) 249.Google Scholar
  9. 9.
    R. A. Schoonheydt, Proc. Int. Conf. Zeolites 5th, ed. L. V. C. Rees, Heyden, London 1980, p. 253.Google Scholar
  10. 10.
    A. Chapoton, Rev. Phys. Appl., 10 (1975) 153.Google Scholar
  11. 11.
    M. F. Rakitinskaya and B. M. Fedorov, Zh. Fiz. Xim., (1983) 2626.Google Scholar
  12. 12.
    M. D. Benalda, J. C. Carru and C A. Druon, J. Phys. E. Sci. Inst., 15 (1982) 132.Google Scholar
  13. 13.
    J. C. Carru and D. Delaffose, Metal Microstructure in zeolites, ed. P. A. Jacobset al, Elsevier, Amsterdam 1982, p. 221.Google Scholar
  14. 14.
    A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London 1983.Google Scholar
  15. 15.
    A. R. Haidar and A. K. Jonscher, J. Chem. Soc. Farad. Trans. I, 82 (1986) 132.Google Scholar
  16. 16.
    T. Ogushi, Bull Chem. Soc. Japan, 61 (1988) 1797.Google Scholar
  17. 17.
    T. Ogushi, K. Nonaka and T. Watanabe, Bull. Chem. Soc. Japan, 61 (1988) 1797.Google Scholar
  18. 18.
    W. M. Meier and D. H. Olson, Atlas of Zeolite Structure Types, Butterworth, London 1988.Google Scholar
  19. 19.
    W. J. Morier, Compilation of Extraframework Sites in Zeolites, Butterworth, London 1982.Google Scholar
  20. 20.
    L. Landau and E. Lifshitz, Physique Statistique, Editions MIR, Moscow 1967, p. 466.Google Scholar
  21. 21.
    L. Landau and E. Lifshitz, Electrodynamique des Milieux Continus, Editions MIR, Moscow 1969, p. 325.Google Scholar
  22. 22.
    A. K. Jonsher, J. Phys. C: Solid State Physics, 11 (1978) L601.Google Scholar
  23. 23.
    A. T. Fromhold, Theory of Metal Oxydation, North Holland, New York 1976, p. 74.Google Scholar
  24. 24.
    W. Jost, Diffusion in Solids, Liquids and Gases, Academic Press. New York 1960, pp. 16, 25, 47, 141,150 and 198.Google Scholar
  25. 25.
    C. Gonzales and R. Roque-Malherbe, Acta Cryst. A43 (1987) 622.Google Scholar
  26. 26.
    C. Gonzales, R. Roque-Malherbe and E. D. Shchukin. J. Mat. Sci. Letters; 6 (1987) 604.Google Scholar
  27. 27.
    C. de las Pozas, D. Diaz-Quintanilla, J. Perez-Pariente, R. Roque-Malherbe and M. Magi, Zeolites, 9 (1989) 33.Google Scholar
  28. 28.
    M. Hernandez-Velez and R. Roque-Malherbe, Preprints of Poster Papers 7th Int. Zeolite Conf. Japan Association of Zeolites, Tokyo 1986, p. 165.Google Scholar
  29. 29.
    M. Hernandez-Velez and R. Roque-Malherbe, 6th Int. Symposium on Electrets Proceedings, ed. D. K. Gas-Gupta and A. W. Patullo, IEEE Service Center, Piscataway, NJ. USA, p. 576.Google Scholar
  30. 30.
    J. R. Wolberg, Prediction Analysis, Van Nostrand 1967.Google Scholar
  31. 31.
    N. R. Draper and H. Smith, Applied Regression Analysis, Wiley, New York 1966.Google Scholar
  32. 32.
    G. Rodriguez-Fuentes, C. Lariot-Sanchez, J. C. Romero and R. Roque-Malherbe, Studies in Surface and Catalysis 24, ed. D. Drzajet al., Elsevier, Amsterdam 1985, p. 375.Google Scholar
  33. 33.
    C. P. Smyth, Dielectric Behavior and Structure, Mc Graw-Hill, New York 1955, pp. 73, 74, 101, 190 and 201.Google Scholar
  34. 34.
    A. Montes, R. Roque-Malherbe and E. D. Shchukin, J. Thermal Anal., 31 (1986) 41.Google Scholar
  35. 35.
    R. Roque-Malherbe, C. de las Pozas and J. Castillo, J. Thermal Anal., 32 (1987) 321.Google Scholar
  36. 36.
    J. A. Alonso, R. Roque-Malherbe, C. Gonzales and C. de las Pozas, J. Thermal Anal., 34 (1988) 865.Google Scholar
  37. 37.
    P. Hedvig and G. Zental, Microwave Study of Chemical Structure and Reactions, Akadémiai Kiadó, Budapest 1969, pp. 28, 116 and 312.Google Scholar
  38. 38.
    C. Lacabanne, Ph. D. Thesis, University of Tolouse, France, 1974.Google Scholar
  39. 39.
    D. Chatain, Ph. D. Thesis, University of Tolouse, France, 1974.Google Scholar
  40. 40.
    C. Lacabanne, P. Goyaud and R. F. Boyer, J. Polym. Sci., Polym. Phys. Ed., 18 (1980) 277.Google Scholar
  41. 41.
    M. Hong and D. E. Day, J. Mater. Sci. 14 (1979) 2493 and J. App. Phys., 50 (1979) 5352.Google Scholar

Copyright information

© Wiley Heyden Ltd., Chichester and Akadémiai Kiadó, Budapest 1990

Authors and Affiliations

  • R. Roque-Malherbe
    • 1
  • M. Hernandez-Velez
    • 2
  1. 1.National Center for Scientific ResearchHavanaCuba
  2. 2.Ciudad LibertadHigher Pedagogical Institute E. J. VaronaMarianao, HavanaCuba

Personalised recommendations