Journal of thermal analysis

, Volume 37, Issue 3, pp 627–636 | Cite as

Lewis acidity of coordinatively unsaturated bis(2-mercaptobenzothiazolato)nickel(II) towards azoles and morpholine

Application of thermal equations to the decomposition of the products
  • A. A. M. Aly
  • A. S. A. Zidan
  • A. I. El-Said


The reactions of bis(2-mercaptobenzothiazolato)nickel(H) with some azoles and morpholine afforded the corresponding mixed ligand complexes. The studied azoles were 2-aminothiazole, benzothiazole, benzoxazole, 2-methylbenzoxazole and 2-mercapto-benzoxazole. The formation of new compounds was confirmed from the spectral data. The thermal decompositions of the compounds together with some related compounds reported in the literature, for comparison, were studied. The activation energies and other kinetic parameters were calculated from the Coats-Redfern and Horowitz-Metzger equations.


Nickel Activation Energy Acidity Thermal Decomposition Lewis Acidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Reaktion von Bis(2-mercaptobenzothiazolato)nickel(II) mit einigen Azolen und Morpholin liefert die entsprechenden Mischligandenkomplexe. Die untersuchten Azole waren 2-Aminothiazol, Benzothiazol, Benzoxazol, 2-Methylbenzoxazol und 2-Mercaptobenzoxazol. Die Bildung neuer Verbindungen wurde anhand von Spektren festgestellt. Es wurde die thermische Zersetzung von einigen dieser Verbindungen sowie zum Vergleich auch von einigen in der Literatur beschriebenen verwandten Verbindungen untersucht. Anhand der Coats-Redfern- und der Horowitz-Metzger-Gleichung wurden die Aktivierungsenergien und andere kinetische Parameter errechnet.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. D. Grassetti, J. F. Murray, M. E. Brokke and D. Gutman, J. Med. Chem., 13 (1970) 273.CrossRefPubMedGoogle Scholar
  2. 2.
    G. Spacu and M. Kuras, Z. Anal. Chem., 104 (1936) 88.Google Scholar
  3. 3.
    I. Auerbach, Ind. Eng. Chem. Ind. (Int.), 45 (1953) 1526.CrossRefGoogle Scholar
  4. 4.
    S. Jeannin, Y. Jeannin and G. Lavigne, Transition Met. Chem., 1 (1976) 186.Google Scholar
  5. 5.
    R. F. Wilson and P. Merchant, J. Inorg. Nucl. Chem., 29 (1967) 1993.CrossRefGoogle Scholar
  6. 6.
    S. Banerji, R. E. Byrne and S. E. Livingstone, Transition Met. Chem., 7 (1982) 5.CrossRefGoogle Scholar
  7. 7.
    D. E. Ryan, Analyt. Chem., 22 (1950) 599.CrossRefGoogle Scholar
  8. 8.
    L. S. Goodman and A. Gilman, The pharmacological basis of therapeutics, MacMillan, Toronto 1971.Google Scholar
  9. 9.
    I. G. Dance and D. Isaac, Austr. J. Chem., 30 (1977) 2425.Google Scholar
  10. 10.
    Y. Muto, T. Tokii, K. Chijiwa and M. Kato, Bull. Chem. Soc. Jpn., 57 (1984) 1011.Google Scholar
  11. 11.
    C. T. Mortimer and J. L. McNaughton, Thermochim. Acta, 6 (1973) 269, and references therein.CrossRefGoogle Scholar
  12. 12.
    A. A. Mohamed, A. A. M. Aly and M. El-Shabasy, Croat. Chem. Acta, 59 (1986) 509.Google Scholar
  13. 13.
    A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.Google Scholar
  14. 14.
    H. H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.CrossRefGoogle Scholar
  15. 15.
    A. A. Frost and R. G. Pearson, Kinetics and Mechanism, John Wiley and Sons, New York 1961.Google Scholar

Copyright information

© Wiley Heyden Ltd., Chichester and Akadémiai Kiadó, Budapest 1991

Authors and Affiliations

  • A. A. M. Aly
    • 1
  • A. S. A. Zidan
    • 1
  • A. I. El-Said
    • 1
  1. 1.Chemistry Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations