Skip to main content
Log in

Thermal Analysis for plastics and rubber engineering

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

A survey of the possibilities of Thermal Analysis (TA) in the plastics and rubber industry is presented. As well as giving examples from research (liquid crystalline main and side chain polymers) and construction (laminates of carbon fibre reinforced epoxy resin prepregs), the field of quality assurance and material characterization is specially discussed. The correlation between TA-characteristics such as the degree of crystallinity and mechanical properties (e.g. hardness or green strength) is demonstrated. The application of thermogravimetry for a precise compositional analysis of compounded rubbers is shown. In practice, Thermal Analysis is most important for failure analysis and the characterization of processing parameters during the production of moulded parts as TA-methods are usually much faster than traditional standard methods. Moreover, the increasing importance of combining TA-methods with other techniques of instrumental analysis is demonstrated. An example of this combination is the TG-DSC-MS coupling which is invaluable in the area of environmental protection especially in the production, application and recycling of moulded parts from polymeric materials.

Zusammenfassung

Es wird ein überblick über die Möglichkeiten der Thermischen Analyse für die Kunststoff- und Kautschukindustrie gegeben. Neben Beispielen aus dem Bereich der Forschung (Haupt- und Seitenketten-Flüssigkristallpolymere) und Konstruktion (Laminate aus kohlefaserverstÄrkten Epoxyharz-Prepregs) wird besonders der Bereich der QualitÄtssicherung und Werkstoff-Charakterisierung behandelt. Hier werden ZusammenhÄnge zwischen TA-Kenngrössen wie z. B. KristallinitÄtsgrad und mechanischen Eigenschaften wie z. B. HÄrte oder Rohfestigkeit dargestellt sowie die Möglichkeiten der Thermogravimetrie zur quantitativen Gummianalyse gezeigt. Für den Praktiker besonders wichtig sind die Fehleranalyse und die Charakterisierung von Verarbeitungseinflüssen bei der Herstellung von Formteilen, da die Thermische Analyse oft wesentlich schneller Ergebnisse liefert als klassische Methoden. Ausserdem wird die zunehmende Bedeutung der Kopplung thermoanalytischer Methoden mit anderen Methoden der instrumentellen Analytik am Beispiel der TG-DSC-MS Kopplung für Probleme aus dem Bereich des Umweltschutzes im Zusammenhang mit der Herstellung und Anwendung von Formteilen aus polymeren Werkstoffen gezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th. R. Manley, Thermal Analysis, Proc. 9th ICTA Congress, Jerusalem, Elsevier Science Publishers B. V., Amsterdam 1988.

    Google Scholar 

  2. D. Braun, 7th H. F. Mark-Symposium, Wien 1988. (see Kautschuk + Gumi-Kunststoffe, 42 (1989) 157).

  3. H. Lingnau, 4th Conf. ‘Polymeric High Performance Materials In the Technical Application’, Süddeutsches Kunststoff-Zentrum Würzburg, 1989.

    Google Scholar 

  4. J. Parey, Conf. Handbook of 1st International Plastics Forum of SPE-Central Europe, Salzburg 1988.

  5. N. Rau, Röhm Spektrum, 3 (1987) 88.

    Google Scholar 

  6. J. Reininger, Diploma thesis at the Fachhochschule Würzburg, Department of Plastics and Rubber Engineering, FRG 1986.

    Google Scholar 

  7. H. Möhler and M. Schwab, Kunstoff, 71 (1981) 245.

    Google Scholar 

  8. DIN 16 773 part 2, Polyamid (PA)-masses for injection moulding and extrusion, Homopolymers, Febr., 1989.

  9. ISO 3146. Plastics. Determination of melting behaviour of semi-crystalline polymers.

  10. D. W. Krevelen and P. J. Hoftyzer, Properties of Polymers. Their Estimation and Correlation with Chemical Structure, Elsevier Scientific Publishing Co., Amsterdam 2nd Edition, 1976.

    Google Scholar 

  11. O. G. Lewis, Physical Constants of linear Homopolymers, Springer Verlag, Berlin 1968.

    Google Scholar 

  12. A. Frank and K. H. Biederbick, Plastics-Compendium, Vogel-Verlag, Würzburg 1988.

    Google Scholar 

  13. J. Brandrup and E. H. Immergut, Polymer Handbook, J. Wiley and Sons, New York 1975.

    Google Scholar 

  14. K. Braun, Proceedings of ‘Applied Instrumental Analytics for Raw Material and Finished parts made of Polymers’, Fachchochschule Würzburg, Department of Plastics and Rubber Engineering, FRG, 1989.

    Google Scholar 

  15. N. V. Schwartz and D. W. Brazier, Thermochim. Acta, 26 (1978) 349.

    Article  Google Scholar 

  16. N. Probst and G. Berote, Proceedings of 21st International Rubber Conf., (Book of Summaries II), Prague 1989.

  17. W. A. Schneider and M. F. Müller, J. Mol. Cat., 46 (1988) 395.

    Article  Google Scholar 

  18. P. Müller, Diploma thesis at the Fachhochschuhle Würzburg, Department of Plastics and Rubber Engineering, FRG, 1989.

    Google Scholar 

  19. DIN 75 201, Determination of the fogging behaviour of materials for indoor equipment of cars.

  20. Th. Bücherl, K. Dörr and H. Möhler, 3rd Polymer Days of Berlin, Berlin 1988.

  21. H. Möhler, J. B. Henderson and E. Kaiserberger, 46th ANTEC, New York 1989.

  22. Technical rules for hazardous materials. TRGS 552. N-Nitrosamines.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möhler, H., Kaisersberger, E. Thermal Analysis for plastics and rubber engineering. Journal of Thermal Analysis 37, 1805–1824 (1991). https://doi.org/10.1007/BF01912212

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01912212

Keywords

Navigation