, Volume 57, Issue 2, pp 202–214 | Cite as

Die Auswirkungen von Mangan-Mangel auf Wachstum und Photosynthese bei der BlaualgeAnacystis Nidulans

  • Gerhard Richter


  1. 1.

    The strict photoautotrophic blue-green alga,Anacystis nidulans, has a high requirement for manganese; its absence from the culture medium causes significant changes in the morphology and the metabolism of the cells.

  2. 2.

    These effects though comparable with those described for green algae are more severe and irreversible. After 5 days of culture in manganese deficient medium cell division is increasingly inhibited while cell growth continues giving rise to filamentous giant cells.

  3. 3.

    Net synthesis of chlorophyll ceases after 5 days, that of carotenoids after 10 days; phycocyanin and RNA are synthesized at a small rate up to 15 days.

  4. 4.

    Photosynthesis of deficient cells (10 days old) as measured by their oxygen production at high light intensities is reduced to 60% of the rate of normal cells when based upon their chlorophyll content; based upon equal cell volume the rate of the deficient cells was only 28% of the normal ones.

  5. 5.

    After short-time photosynthesis with radioactive bicarbonate the14C-fixation in the petrolether, the alcohol-water and the insoluble fraction from deficient cells was significantly lower as compared with the corresponding fractions from normal cells.

  6. 6.

    The alcohol-water fraction from manganese deficient cells differs in the distribution pattern of the incorporated14C from that of normal cells insofar as aspartic acid has a higher, glutamic acid a lower content of14C. Moreover, no labelling of glycolic acid, malic acid and alanine occurs in deficient cells during these short-time incorporation experiments.

  7. 7.

    The results indicate that a correlation exists between high manganese requirement and strict photoautotrophy; inAnacystis the relation of manganese to photosynthesis is obviously not restricted to the mechanism of oxygen liberation but seems to exist on the reductive side of photosynthesis, too.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts-Dietert, F.: Die Wirkung von Eisen und Mangan auf die Stickstoff-Assimilation vonChlorella. Planta (Berl.),32, 88–117 (1941).Google Scholar
  2. Allen, M. B., D. I. Arnon, J. B. Capindale, F. R. Whatley andC. J. Durham: Photosynthesis by isolated chloroplasts. III. Evidence for complete photosynthesis. J. Amer. chem. Soc.77, 4149–4155 (1955).Google Scholar
  3. Arnon, D. I.: Some recent advances in the study of essential micronutrients for green plants. VIII. Congr. Int. Bot., Paris, Sekt.11, S. 73–80 (1954).Google Scholar
  4. Basham, J. A., andM. Calvin: The path of carbon in photosynthesis. Englewood Cliffs, N. J.: Prentice-Hall, Inc. 1957.Google Scholar
  5. Benson, A. A., J. A. Basham, M. Calvin, T. C. Goodale, V. A. Haas andW. Stepka: The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. Amer. chem. Soc.72, 1710–1718 (1950).Google Scholar
  6. Bergmann, L.: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. II. Vergleichende Untersuchungen über den Einfluß mineralischer Faktoren bei heterotropher und mixotropher Ernährung. Flora (Jena)142, 493–539 (1955).Google Scholar
  7. Bishop, N. I., andH. Gaffron: The inhibition of photosynthesis by sodium fluoride. I. The sodium fluoride-induced carbon dioxide burst fromChlorella. Biochim. biophys. Acta28, 35–44 (1958).PubMedGoogle Scholar
  8. Bishop, W. B. S.: The distribution of manganese in plants, and its importance in plant metabolism. Aust. J. exp. Biol. med. Sci.5, 125–141 (1928).Google Scholar
  9. Eyster, C., T. E. Brown andH. A. Tanner: Manganese requirement with respect to respiration and the Hill reaction inChlorella pyrenoidosa. Arch. Biochem.64, 240–241 (1956).PubMedGoogle Scholar
  10. ——— andS. L. Hood: Manganese requirement with respect to growth, Hill reaction and photosynthesis. Plant Physiol.33, 235–241 (1958).Google Scholar
  11. Frenkel, A., E. Battley andH. Gaffron: Photosynthesis and photoreduction by the blue-green alga,Synechococcus elongatus Näg. Biol. Bull. (Woods Hole)99, 157–162 (1950).Google Scholar
  12. Gaffron, H., andJ. Rosenberg: Über Rückreaktionen bei der Photosynthese. Naturwissenschaften42, 354–364 (1955).Google Scholar
  13. Kessler, E.: On the role of manganese in the oxygen-evolving system of photosynthesis. Arch. Biochem.59, 527–529 (1955).PubMedGoogle Scholar
  14. —: Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. I. Über die Rolle des Mangans bei Photoreduktion und Photosynthese. Planta (Berl.)49, 435–454 (1957).Google Scholar
  15. —,R. Moraw, B. Rumberg andH. T. Witt: Managanese content and changes in light absorption during photosynthesis in green algae. Biochim. biophys. Acta43, 134–135 (1960).PubMedGoogle Scholar
  16. Kratz, W. A., andJ. Myers: Nutrition and growth of several blue-green algae. Amer. J. Bot.42, 282–287 (1955).Google Scholar
  17. MacKinney, G.: Absorption of light by chlorophyll solutions. J. biol. Chem.140, 315–322 (1941).Google Scholar
  18. Myers, J., andW. A. Kratz: Relations between pigment content and photosynthetic characteristics in a blue-green alga. J. gen. Physiol.39, 11–22 (1955).PubMedGoogle Scholar
  19. Ogur, M., andG. Rosen: The nucleic acids of plant tissues. I. The extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. Arch. Biochem.25, 262–276 (1950).PubMedGoogle Scholar
  20. Pirson, A.: Ernährungs- und stoffwechselphysiologische Untersuchungen anFontinalis undChlorella. Z. Bot.31, 193–267 (1937).Google Scholar
  21. —: Mineralstoffe und Photosynthese. In Handbuch der Pflanzenphysiologie, Bd. IV, S. 355–381. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  22. —, andL. Bergmann: Manganese requirement and carbon source inChlorella. Nature (Lond.)176, 209–210 (1955).Google Scholar
  23. —,C. Tichy, u.G. Wilhelmi: Stoffwechsel und Mineralsalzernährung einzellinger Grünalgen. I. Vergleichende Untersuchungen an Mangelkulturen von Ankistrodesmus. Planta (Berl.)40, 199–253 (1952).Google Scholar
  24. Richter, G.: Comparison of enzymes of sugar metabolism in two photosynthetic algae:Anacystis nidulans andChlorella pyrenoidosa. Naturwissenschaften46, 604 (1959).Google Scholar
  25. —: The lack of diphosphofructose aldolase in two photosynthetic organisms:Anacystis nidulans andRhodopseudomonas spheroides. Biochim. biophys. Acta48, 606–608 (1961).PubMedGoogle Scholar
  26. Svedberg, T., andT. Katsurai: The molecular weights of phycocyan and phycoerythrin from Phorphyra tenera and of phycocyan fromAphanizomenon Flos Aquae. J. Amer. chem. Soc.51, 3573–3583 (1929).Google Scholar
  27. Tanner, H. A., T. E. Brown, C. Eyster andR. W. Treharne: A manganese dependent photosynthetic process. Biochem. Biophys. Res. Commun.3, 205 to 210 (1960).Google Scholar
  28. Wiessner, W.: Wachstum und Stoffwechsel vonRhodopseudomonas spheroides in Abhängigkeit von der Versorgung mit Mangan und Eisen. Flora (Jena)149, 1–42 (1960).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • Gerhard Richter
    • 1
  1. 1.Botanischen Institut der Universität TübingenTübingen

Personalised recommendations