Journal of thermal analysis

, Volume 1, Issue 1, pp 75–96 | Cite as

The application of differential thermal analysis technique to the study of single, binary and ternary oxide catalyst systems

  • S. K. Bhattacharyya
  • N. C. Datta
Special Reviews

Abstract

The authors have reviewed the salient features of the thermal behavior of the following systems:
  1. (A)

    Single oxide systems: (i) Cr2O3, (ii) Fe2O3, (iii) Al2O3, (iv) MnO2, (v) ZrO2, (vi) NiO, (vii) ZnO, (viii) TiO2, (ix) SiO2, (x) ThO2.

     
  2. (B)

    Binary oxide systems: (i) Cr2O3-Al2O3, (ii) Cr2O3-Fe2O3, (iii) Cr2O3-ZnO, (iv) Al2O3-SiO2, (v) Al2O3-Fe2O3, (vi) MnO-Cr2O3, (vii) Cu-Al2O3, (viii) ZrO2-Cr2O3, (ix) NiO-Cr2O3, (x) ZrO2-NiO, (xi) ThO2-Al2O3.

     
  3. (C)

    Ternary oxide systems: (i) NiO-Cr2O3-ZrO2, (ii) Fe2O3-Cr2O3-Al2O3.

     
  4. (D)

    Vanadates: (i) tin vanadate, (ii) copper vanadate, (iii) lead vanadate, (iv) cobalt vanadate and (v) silver vanadate.

     

Excellent correlations have been obtained in most of the systems between the thermal characteristics of the solids, as revealed by DTA, and their specific surface areas and catalytic activity.

Keywords

TiO2 Al2O3 Vanadate MnO2 Differential Thermal Analysis 

Résumé

On a examiné les principales caractéristiques du comportement thermique des catalysateurs suivants, avec systèmes d'oxydes hétérogènes:
  1. (A)

    Systèmes d'oxydes simples: 1. Cr2O3, 2. Fe2O3, 3. Al2O3, 4. MnO2, 5. ZrO2, 6. NiO, 7. ZnO, 8. TiO2, 9. SiO2, 10. ThO2;

     
  2. (B)

    Systèmes d'oxydes binaires: 1. Cr2O3-Al2O3, 2. Cr2O3-Fe2O3, 3. Cr2O3-ZnO, 4. Al2O3-SiO2, 5. Al2O3-Fe2O3, 6. MnO-Cr2O3, 7. Cu-Al2O3 8. ZrO2-Cr2O3, 9. NiO-Cr2O3, 10. ZrO2-NiO, 11. ThO3-Al2O3;

     
  3. (C)

    Systèmes d'oxides ternaires: 1. NiO-Cr2O3-ZrO2; 2. Fe2O3-Cr2O3-Al2O3;

     
  4. (D)

    Vanadates: 1. d'étain, 2. de cuivre, 3. de plomb, 4. de cobalt, 5. d'argent.

     

Les caractéristiques thermiques des solides, observées par A. T. D., montrent une bonne concordance avec leurs surfaces spécifiques et leur activité catalytique.

Zusammenfassung

Es wurden die wichtigsten Kennzeichen des thermischen Verhaltens folgender heterogener Katalysator-Systeme untersucht.
  1. (A)

    Einfache Oxydsysteme: 1. Cr2O3, 2. Fe2O3, 3. Al2O3, 4. MnO2, 5. ZrO2, 6. NiO, 7. ZnO, 8. TiO2, 9. SiO2, 10. ThO2.

     
  2. (B)

    Binäre Oxydsysteme: 1. Cr2O3-Al2O3, 2. Cr2O3-Fe2O3, 3. Cr2O3-ZnO, 4. Al2O3-SiO2, 5. Al2O3-Fe2O3, 6. MnO-Cr2O3 7. Cu-Al2O3, 8. ZrO2-Cr2O3, 9. NiO-Cr2O3, 10. ZrO2-NiO, 11. ThO2-Al2O3.

     
  3. (C)

    Ternäre Oxydsysteme: 1. NiO-Cr2O3-ZrO2, 2. Fe2O3-Cr2O3-Al2O3.

     
  4. (D)

    Vanadate: 1. Zinn-, 2. Kupfer-, 3. Blei-, 4. Kobalt-, 5. Silbervanadate.

     

Gute Übereinstimmung konnte zwischen den durch DTA Messungen gefundenen thermischen Kennzeichen der festen Substanzen und ihren spezifischen Oberflächen, sowie der katalytischen Aktivität festgestellt werden.

Резюме

Исследованы характе рные свойства термического поведе ния следующих систем:
  1. (A)

    Одинарные системы ок исей: (I) Сr2О3, (II) Fe2O3 (III) Аl2О3, (IV) MnO2, (V) ZrO2, (VI) NiO, (VII) ZnO, (VIII) TiO2, (IX) SiO2, (X) ThO2. (Б) Бинарные системы ок исей: (I) Cr2O3- Al2O3, (II) Cr2O3-Fe2O3, (III) Cr2O3-ZnO, (IV) Аl2О3-SiO2, (V) Al2O3-Fe2O3, (VI) MnO-Cr2O3, (VII) Cu- Al2O3, (VIII) ZrO2 Cr2O3, (IX) NiO-Cr2O3, (X) ZrO2-NiO, (XI) ThO2- Al2O3.

     
  2. (B)

    Тройные системы окис ей: (I) NiO-Cr2O3-ZrO2, (II) Fe2O3-Cr2O3 Al2O3.

     

(Г) Ванадаты: (2) ванадат о лова, (II) ванадат меди, (III) в анадат свинца, (IV) ванадат коба льта, и (V) ванадат серебра.

В большинстве систем методом дифференциа льного термического анализ а (ДТА) найдена отличная кор реляция, между термич ескими характеристиками ис следуемых веществ, их поверхностью и кат алитической активно стью.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Bhattacharyya andV. S. Ramchandran, J. Sci. Industr. Res., 12 (1952) 549, 550.Google Scholar
  2. 2.
    S. K. Bhattacharyya andV. S. Ramchandran, J. Sci. Industr. Res., B12 (1953) 279.Google Scholar
  3. 3.
    S. K. Bhattacharyya andV. S. Ramchandran, J. Sci. Engng. Res. (I. I. T., Kharagpur), 1 (1957) 73.Google Scholar
  4. 4.
    S. K. Bhattacharyya andV. S. Ramchandran, Bull. Nat. Inst. Sci. India, 12 (1959) 23. (Proc. of the Symposium on Contact Catalysis, 1956, Calcutta.)Google Scholar
  5. 5.
    S. K. Bhattacharyya, V. S. Ramchandran andJ. C. Ghosh, Adv. in Catalysis, Academic Press Inc., New York, Vol. IX, 1957, p. 114. (Proc. Int. Congr. on Catalysis, 1956, Philadelphia.)Google Scholar
  6. 6.
    S. K. Bhattacharyya andS. Kameswari, Bull. Nat. Inst. Sci. India, 12 (1959) 43.Google Scholar
  7. 7.
    S. K. Bhattacharyya andS. Kameswari, J. Chim. phys., 56 (1959) 823.Google Scholar
  8. 8.
    S. K. Bhattacharyya, S. Kameswari andG. Srinivasan, Z. phys. Chem., 214 (1960) 191.Google Scholar
  9. 9.
    S. K. Bhattacharyya andN. D. Ganguly, Proc. Nat. Inst. Sci. India, 27A (1961) 588.Google Scholar
  10. 10.
    S. K. Bhattacharyya, G. Srinivasan andN. D. Ganguly, J. Indian Chem. Soc., 41 (1964) 233.Google Scholar
  11. 11.
    S. K.Bhattacharyya, Proc. First Int. Congr. Thermal Analysis, Aberdeen, 1965, p. 239.Google Scholar
  12. 12.
    S. K.Bhattacharyya, G. S.De and N. C.Datta, Proc. Second Int. Congr. Thermal Analysis, Worcester, 1968.Google Scholar
  13. 13.
    S. K.Bhattacharyya and J.Ghosh, Proc. Second Int. Congr. Thermal Analysis, Worcester, 1968.Google Scholar
  14. 14.
    Griffith et al., Nature, 172 (1953) 77.PubMedGoogle Scholar
  15. 15.
    Griffith et al., Proc. Roy. Soc., A 224 (1954) 412, 419, 426.Google Scholar
  16. 16.
    M. Domine-Burges, Compt. Rend., 228 (1949) 1435.Google Scholar
  17. 17.
    Berezovskaya andSemikhatova, J. Phys. Chem. (U.S.S.R.), 7 (1936) 939.Google Scholar
  18. 18.
    J. Brenet andA. M. Briot, Compt. Rend., 232 (1951) 1300, 2021.Google Scholar
  19. 19.
    H. Pichler andK. H. Ziesecke, Bull. U.S. Bur. Min., 488 (1950) 34.Google Scholar
  20. 20.
    W. O. Milligan andL. Merten, J. Phys. Coll. Chem., 51 (1947) 521.Google Scholar
  21. 21.
    W. O. Milligan andJ. Holmes, J. Am. Chem. Soc., 63 (1941) 149.Google Scholar
  22. 22.
    H. B. Weiser, W. O. Milligan andG. A. Mills, J. Phys. Coll. Chem., 52 (1948) 942.Google Scholar
  23. 23.
    W. O. Milligan andL. Merten, J. Phys. Chem., 50 (1946) 465.Google Scholar
  24. 24.
    R. P. Eischens andP. W. Selwood, J. Am. Chem. Soc., 70 (1948) 227.Google Scholar
  25. 25.
    A. G. Oblad, T. H. Milliken andG. A. Mills, Adv. in Catalysis, Academic Press Inc., New York, Vol. III, 1951, p. 199.Google Scholar
  26. 26.
    V. N. Ipatieff andG. S. Monroe, J. Am. Chem. Soc., 61 (1945) 2168.Google Scholar
  27. 27.
    M. Taniguchi andT. R. Ingraham, Can. J. Chem., 42 (1964) 2467.Google Scholar
  28. 28.
    N. Strupler, Compt. Rend., 255 (1962) 527.Google Scholar

Copyright information

© Wiley Heyden Ltd., Chichester and Akadémiai Kiadó, Budapest 1969

Authors and Affiliations

  • S. K. Bhattacharyya
    • 1
  • N. C. Datta
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyKharagpurIndia

Personalised recommendations