Foundations of Physics

, Volume 18, Issue 10, pp 999–1012 | Cite as

Joint probabilities of noncommuting operators and incompleteness of quantum mechanics

  • A. O. Barut
  • M. Božić
  • Z. Marić
Part IV. Invited Papers Dedicated To David Bohm

Abstract

We use joint probabilities to analyze the EPR argument in the Bohm's example of spins.(1) The properties of distribution functions for two, three, or more noncommuting spin components are explicitly studied and their limitations are pointed out. Within the statistical ensemble interpretation of quantum theory (where only statements about repeated events can be made), the incompleteness of quantum theory does not follow, as the consistent use of joint probabilities shows. This does not exclude a completion of quantum mechanics, going beyond it, by a more general theory of single events, using hidden variables, for example.

Keywords

Distribution Function Quantum Mechanic General Theory Quantum Theory Joint Probability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951), Chap. 22.Google Scholar
  2. 2.
    E. P. Wigner,Phys. Rev. 40, 749 (1932).CrossRefGoogle Scholar
  3. 3.
    P. Carruthers and F. Zachariasen,Rev. Mod. Phys. 55, 245 (1983).CrossRefGoogle Scholar
  4. 4.
    M. Hillery, R. O'Connell, M. Scully, and E. P. Wigner,Phys. Rep. 106, 121 (1984).CrossRefGoogle Scholar
  5. 5.
    A. O. Barut,Phys. Rev. 108, 565 (1957).CrossRefGoogle Scholar
  6. 6.
    M. Scully,Phys. Rev. D 28, 2477 (1983); L. Cohen and M. O. Scully,Found. Phys. 16, 295 (1986).CrossRefGoogle Scholar
  7. 7.
    W. Wootters,Ann. N. Y. Acad. Sci. 480 275 (1986).Google Scholar
  8. 8.
    8.B. V. Landau,J. Math. Phys. 7, 1568 (1987).Google Scholar
  9. 9.
    A. O. Barut,Physica Scripta 35, 229 (1987).Google Scholar
  10. 10.
    B. D'Espagnat,Sci. Am. 241, 158 (1979);Phys. Rev. D 11, 1424 (1975).Google Scholar
  11. 11.
    B. H. Kellet,Found. Phys. 7, 735 (1977).CrossRefGoogle Scholar
  12. 12.
    Z. MarićEssay on Physical Reality (in Serbian) (Nolit, Beograd, 1986).Google Scholar
  13. 13.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).CrossRefGoogle Scholar
  14. 14.
    A. Einstein, inAlbert Einstein: Philosopher Scientist, P. A. Schilp, ed. (Open Court, La Salle, Illinois, 1949), pp. 665–676.Google Scholar
  15. 15.
    F. J. Belinfante,A Survey of Hidden-Variables Theories, (Pergamon, Oxford, 1973).Google Scholar
  16. 16.
    W. H. Furry,Phys. Rev. 49, 393 (1936).CrossRefGoogle Scholar
  17. 17.
    H. Margenau and R. N. Hill,Prog. Theoret. Phys. (Kyoto) 26, 722 (1961).Google Scholar
  18. 18.
    A. Fine,Phys. Rev. Lett. 48, 291 (1982);J. Math. Phys. 23, 1306 (1982).CrossRefGoogle Scholar
  19. 19.
    W. M. Muynck and O. Abu-Zeid,Phys. Lett. 110A, 485 (1984).Google Scholar
  20. 20.
    J. S. Bell,Physics 1, 195 (1964).Google Scholar
  21. 21.
    A. O. Barut,Ann. N. Y. Acad. Sc. 480, 393 (1986) and inQuantum Mechanics Versus Local Realism, F. Selleri, ed. (Plenum, New York, 1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. O. Barut
    • 1
  • M. Božić
    • 1
  • Z. Marić
    • 2
  1. 1.International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Institute of PhysicsBeogradYugoslavia

Personalised recommendations