Skip to main content
Log in

Deformable models

  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We develop physically-based models of deformable curves, surfaces, and solids for use in computer graphics. Our deformable models are governed by the mechanical laws of continuous bodies whose shapes can change over time. These laws, expressed in the form of dynamic differential equations, unify the description of shape and motion. By solving the equations numerically we are able to create realistic animations involving the interaction of deformable models with various applied forces, ambient media, and impenetrable obstacles in a simulated physical world. We develop deformable models capable of perfectly elastic behavior and more general inelastic behavior, including viscoelasticity, plasticity, and fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alfrey T (1947) Mechanical behavior of high polymers. Interscience, New York, NY

    Google Scholar 

  • Armstrong WW, Green M (1985) The dynamics of articulated rigid bodies for purposes of animation. The Visual Computer 1:231–240

    Google Scholar 

  • Barr AH (1984) Global and local deformations of solid primitives. Computer Graphics (Proc SIGGRAPH) 18(3):21–29

    Google Scholar 

  • Barr A, Barzel R, Haumann D, Kass M, Platt J, Terzopoulos D, Witkin A (1987) Topics in physically-based modeling. ACM SIGGRAPH '87 Course Notes, vol 17, Anaheim, CA

  • Bartels RH, Beatty JC, Barsky BA (1987) An introduction to splines for use in computer graphics and geometric modeling. Morgan Kaufmann, Los Altos, CA

    Google Scholar 

  • Barzel R, Barr A (1987) Dynamic Constraints. In: Barr A., et al., (eds) (1987) Topics in physically-based modeling ACM SIGGRAPH '87 Course Notes, vol 17, Auaheim, CA

  • Blinn JF (1982) A generalization of algebraic surface drawing. ACM Trans Graph 1:235–256

    Article  Google Scholar 

  • De Boor C (1978) A practical guide to splines. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Do Carmo MP (1974) Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Christiansen HN (1974) Computer generated displays of structures in vibration. The Shock and Vibration Bulletin 44(2):185–192

    Google Scholar 

  • Christiansen HN, Benzley SE (1982) Computer graphics displays of nonlinear calculations. Computer methods in applied mechanics and engineering 34:1037–1050

    Article  Google Scholar 

  • Christensen RM (1982) Theory of viscoelasticity, 2nd ed. Academic Press, New York

    Google Scholar 

  • Courant R, Hilbert D (1953) Methods of mathematical physics, vol 1. Interscience, London

    Google Scholar 

  • Faux JD, Pratt MJ (1981) Computational geometry for design and manufacture. Halstead Press, Horwood, NY

    Google Scholar 

  • Feynman CR (1986) Modeling the Appearance of Cloth, MSc thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA

    Google Scholar 

  • Fleischer K, Witkin A (1988) A modeling testbed. Proc Graphics Interface '88. Edmonton, Canada, pp 127–137

  • Fleischer K, Witkin A, Kass M, Terzopoulos D (1987) Cooking with Kurt. An animated video. Schlumberger Palo Alto Research, Palo Alto, CA

    Google Scholar 

  • Fournier A, Bloomenthal J, Oppenheimer P, Reeves WT, Smith AR (1987) The modeling of natural phenomena. ACM SIGGRAPH '87 Course Notes, vol 16. Anaheim, CA

  • Girard M, Maciejewski AA (1985) Computational modeling for the computer animation of legged figures. Computer Graphics (Proc SIGGRAPH) 19(3): 263–270

    Google Scholar 

  • Goldstein H (1980) Classical mechanics, 2nd edn. Addison-Wesley, Reading, MA

    Google Scholar 

  • Hackbusch W (1985) Multigrid methods and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hansen C, Henderson T (1986) UTAH Range Database, Dept Comput, Univ Utah, Salt Lake City, Utah, TR No. UUCS86-113

    Google Scholar 

  • Haumann D (1987) Modeling the physical behavior of flexible objects. In: Barr A., et al., (eds) (1987) Topics in physicallybased modeling ACM SIGGRAPH '87 Course Notes, vol 17, Anaheim, CA

  • Hoffmann CM, Hopcroft JE (1987) Simulation of physical systems from geometric models. IEEE J Robotics and Automation, RA-3(3):194–206

    Google Scholar 

  • Hunter SC (1983) Mechanics of Continuous Media, 2nd edn. Ellis Horwood, Chishter, England

    Google Scholar 

  • Issacs PM, Cohen MF (1987) Controlling dynamic simulation with kinematic constrants, behavior functions, and inverse dynamics. Computer Graphics (Proc SIGGRAPH) 21(4):215–224

    Google Scholar 

  • Kardestuncer H, Norrie DH (eds) (1987) Finite element handbook. McGraw-Hill, New York

    Google Scholar 

  • Kass M, Witkin A, Terzopoulos D (1987) Snakes: Active contour models. Int J Comput Vision 1:321–331

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1959) Theory of elasticity. Pergamon Press, London, UK

    Google Scholar 

  • Lapidus L, Pinder GF (1982) Numerical solution of partial differential equations in science and engineering. Wiley, New York

    Google Scholar 

  • Lassiter J (1987) Principles of traditional animation applied to 3D computer animation. Computer Graphics (Proc SIGGRAPH) 21(4):35–44

    Google Scholar 

  • Luenberger DG (1973) Introduction to linear and nonlinear programming. Addison-Wesley, Reading, MA

    Google Scholar 

  • Lundin D (1987) Ruminations of a model maker. IEEE Comput Graph Appl 7(5):3–5

    Google Scholar 

  • Mendelson A (1968) Plasticity — theory and application. Macmillan, New York

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Sederberg TW Parry SR (1986) Free-form deformation of solid geometric models. Comput Graph (Proc SIGGRAPH) 20(4):151–160

    Google Scholar 

  • Shephard MS, Abel JF (1987) Interactive computer graphics for CAD/CAM. In: Kardestuncer H, Norrie DH, (eds) (1987) Finite Element Handbook McGraw-Hill, New York, pp 4.233–4.254

    Google Scholar 

  • Sih GC (1981) Mechanics of fracture. Martinus Nijhoff, The Hague

    Google Scholar 

  • Terzopoulos D (1983) Multilevel computational processes for visual surface reconstruction. Computer Vision, Graphics, and Image Processing 24:52–96

    Google Scholar 

  • Terzopoulos D (1986) Regularization of inverse visual problems involving discontinuities. IEEE Trans Pattern Anal Mach Intell PAMI-8:413–424

    Google Scholar 

  • Terzopoulos D (1988) The computation of visible-surface representations. IEEE Trans Pattern Anal Mach Intell PAMI-10:417–438

    Article  Google Scholar 

  • Terzopoulos D, Platt J, Barr A, Fleischer K (1987a) Elastically deformable models. Comput Graph (Proc. SIGGRAPH) 21(4):205–214

    Google Scholar 

  • Terzopoulos D, Witkin A (1988) Physically-based models with rigid and deformable components. IEEE Comput Graph Appl 8(6):41–51

    Article  Google Scholar 

  • Terzopoulos D, Witkin A, Kass M (1987b) Symmetry-seeking models and 3D object reconstruction. Int J Comput Vision 1:211–221

    Article  Google Scholar 

  • Weil J (1986) The synthesis of cloth objects. Comput Graph (Proc SIGGRAPH) 20(4):49–54

    Google Scholar 

  • Wilhelms J (1987) Using dynamic analysis for realistic animation of articulated bodies. IEEE Comput Graph Appl 7(6):12–27

    Google Scholar 

  • Wilhelms J, Barsky BA (1985) Using dynamic analysis to animate articulated bodies such as humans and robots. Proc Graphics Interface '85. Montreal, Canada, pp 97–104

  • Wyvill B, McPheeters C, Wyvill G (1986) Animating soft objects. The Visual Computer 2:235–242

    Article  Google Scholar 

  • Zienkiewicz OC (1977) The finite element method, 3rd ed. McGraw-Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzopoulos, D., Fleischer, K. Deformable models. The Visual Computer 4, 306–331 (1988). https://doi.org/10.1007/BF01908877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908877

Key words

Navigation