Journal of Protein Chemistry

, Volume 15, Issue 6, pp 585–590 | Cite as

Histidine residues in α-crystallin are not all available for chemical modification and acid-base titration

  • Sibes Bera
  • Sudhir K. Ghosh


We have determined the number of histidine residues available for chemical modification with the specific reagent diethylpyrocarbonate in both bovine and goat α-crystallins. Results indicate that there are two distinctly different classes of histidine residues in the native protein. Out of 300 total histidine residues in the protein (on the basis of 800-kDa protein molecular weight) about 170±2 residues have been found to be modified by the reagent. The remaining 130±2 residues are modified when the protein is partially denatured in 1.5 M guanidine hydrochloride. The H+-titration behavior of the histidine residues in the protein corroborates this result. The observed differential accessibility of histidine residues may be important in maintaining the surface hydrophobicity of the aggregate as well as in stabilizing its quaternary structure.

Key words

α-Crystallin histidine residues chemical modification diethylpyrocarbonate acid-base titration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. E., Becktel, W. J., and Dahlquist, F. W. (1990).Biochemistry 29, 2403–2408.CrossRefPubMedGoogle Scholar
  2. Augusteyn, R. C., and Koretz, J. F. (1987).FEBS Lett. 222, 1–5.CrossRefPubMedGoogle Scholar
  3. Augusteyn, R. C., Hum, T. P., Putilin, T., and Thomson, J. A. (1987).Biochim. Biophys. Acta 915, 132–139.PubMedGoogle Scholar
  4. Augusteyn, R. C., Ghiggino, K. P., and Putilina, T. (1993).Biochim. Biophys. Acta 1162, 61–71.PubMedGoogle Scholar
  5. Bloemendal, H., Berns, T., Zweers, A., Hoenders, H. J., and Benedetti, E. L. (1972).Eur. J. Biochem. 24, 401–406.CrossRefPubMedGoogle Scholar
  6. Bindels, J., Siezen, R. J., and Hoenders, H. J. (1980).Eur. J. Biochem. 111, 435–444.CrossRefPubMedGoogle Scholar
  7. Bradford, M. M. (1976).Anal. Biochem. 72, 248–254.PubMedGoogle Scholar
  8. Horwitz, J. (1992).Proc. Natl. Acad. Sci. USA 89, 10449–10453.PubMedGoogle Scholar
  9. Miles, E. W. (1977).Meth. Enzymol. 47, 431–442.PubMedGoogle Scholar
  10. Miles, E. W., and Kumagai, H. (1974).J. Biol. Chem. 249, 2843–2851.PubMedGoogle Scholar
  11. Ouderaa, F. J., van der, de Jong, W. W., and Bloemendal, H. (1973).Eur. J. Biochem. 39, 207–222.CrossRefPubMedGoogle Scholar
  12. Ouderaa, F. J., van der, de Jong, W. W., Hilderink, A., and Bloemendal, H. (1974).Eur. J. Biochem. 49, 157–168.CrossRefPubMedGoogle Scholar
  13. Roy, B., and Ghosh, S. K. (1991).Exp. Eye Res. 53, 693–701.CrossRefPubMedGoogle Scholar
  14. Siezen, R. J. (1982).Exp. Eye Res. 34, 969–983.CrossRefPubMedGoogle Scholar
  15. Siezen, R. J., and Berger, H. (1978).Eur. J. Biochem. 91, 397–405.CrossRefPubMedGoogle Scholar
  16. Siezen, R. J., Bindels, J. G., and Hoenders, H. J. (1978a).Eur. J. Biochem. 91, 387–396.CrossRefPubMedGoogle Scholar
  17. Siezen, R. J., Coenders, G. M., and Hoenders, H. J. (1978b).Biochim. Biophys. Acta 537, 456–465.PubMedGoogle Scholar
  18. Spector, A. (1972).Israel J. Med. Sci. 8, 1577–1582.PubMedGoogle Scholar
  19. Tanford, C. (1962).Adv. Protein Chem. 17, 69–165.Google Scholar
  20. Tardieu, A., Laporte, D., Licinio, P., Krop, B., and Delaye, M. (1986).J. Mol. Biol. 192, 711–724.CrossRefPubMedGoogle Scholar
  21. Walsh, M. T., Sen, A. C., and Chakrabarti, B. (1991).J. Biol. Chem. 266, 20079–20084.PubMedGoogle Scholar
  22. Wistow, G. (1993).Exp. Eye Res. 56, 729–732.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  1. 1.Crystallography and Molecular Biology DivisionSaha Institute of Nuclear PhysicsCalcuttaIndia

Personalised recommendations