Skip to main content
Log in

Thiol-induced oligomerization of α-lactalbumin at high pressure

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Denaturation and aggregation ofα-lactalbumin at high pressure (up to 10 kbar, 1000 MPa) were studied by means of circular dichroism, gel-permeation chromatography, sodium dodecyl sulfate and gel electrophoresis. It was found that the unfolding ofα-lactalbumin at high pressure is reversible even in basic pH and at a protein concentration as large as 10%. In these conditions only a negligible fraction of the protein is denatured irreversibly and aggregates. The rate of aggregation ofα-lactalbumin at high pressure increases significantly in the presence of low-molecular reducing agents such as cysteine, 2-mercaptoethanol, and dithiothreitol. Maximal yield ofα-lactalbumin oligomerization (over 90%) was achieved in the presence of cysteine at the molar cysteine/protein ratioq=2 and atpH 8.5. Apparent molecular weight of the obtained oligomers was over 500 kDa. It was shown that the size distribution of oligomers can be modulated by varyingpH and reducing agent. The size distribution shifts in the direction of very large, poorly soluble particles whenpH decreases. Maximal content of the insoluble fraction (about 30%) can be reached at pH 5.5 when cysteine (q=2) is used as reducing agent. The oligomers ofα-lactalbumin are stabilized mainly by nonnative interchain disulfide bridges. Circular dichroism measurements point to an additional mechanism of cohesion of polypeptide chains in the oligomers, which is formation of intermolecularβ-sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balny, C., and Masson, P. (1993). Effects of pressure on proteins,Food Rev. Int. 9, 611–628.

    Article  CAS  Google Scholar 

  • Barbu, E., and Macheboeuf, M. (1948). Recherches sur la gelification des proteins. 5. Considerations generales et interpretations,Ann. Inst. Pasteur 75, 426–441.

    CAS  Google Scholar 

  • Barbu, E., and Joly, M. (1953). The globular-fibrous protein transformation,Discuss. Faraday Soc. 36, 323–333.

    Google Scholar 

  • Barbu, E., Basset, J., and Joly, M. (1954). Action des hautes pressions sur la sérum-albumine de cheval. Etude par la biréfrigence d'ecoulement,Bull. Soc. Chim. Biol. 36, 323–333.

    CAS  Google Scholar 

  • Baum, J., Dobson, C. M., Evans, P. A., and Hanley, C. (1989). Characterization of a partly folded protein by NMR methods: Studies on the Molten globule state of guinea pigα-lactalbumin,Biochemistry 28, 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Brandts, J. F. (1969). Conformational transition of proteins in water and in aqueous mixtures, inStructure and Stability of Biological Macromolecules (Timasheff, S. N., and Fasman, G. D., eds.), Marcel Dekker, New York, pp. 212–289.

    Google Scholar 

  • Bridgman, P. W. (1914). The coagulation of albumins by pressure,J. Biol. Chem. 19, 511–512.

    Article  CAS  Google Scholar 

  • Buttkus, H. (1970). Accelerated denaturation of myosin in frozen solutions,J. Food Sci. 35, 558–562.

    Article  CAS  Google Scholar 

  • Defaye, A. B., and Ledward, D. A. (1995). Pressure induced dimerization of metmyoglobin,J. Food Sci. 60, 262–264.

    Article  CAS  Google Scholar 

  • Doi, E., Shimizu, A., Oe, H., and Kitabake, N. (1991). Melting of heat-induced ovalbumin gels by pressure,Food Hydrocoll. 5, 409–425.

    Article  CAS  Google Scholar 

  • Dumay, E. M., Kalichevsky, M. T., and Cheftel, J. C. (1995). High-pressure unfolding and aggregation ofβ-lactoglobulin and the baroprotective effect of sucrose,J. Agric Food Chem. 42, 1861–1868.

    Article  Google Scholar 

  • Friedman, M. (1976).The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids. Peptides and Proteins, Pergamon Press, Oxford, pp. 199–229.

    Google Scholar 

  • Friedman, M. (1994). Mechanisms of beneficial effects of sulfur amino acids, inSulfur Compounds in Foods (Mussian, C. J., and Keelan, M. E., eds.), American Chemical Society, Washington, D.C., pp. 258–277.

    Chapter  Google Scholar 

  • Funtenberger, S., Dumay, E., and Chetfel, J. C. (1995). Pressure-induced aggregation ofβ-lactoglobulin inp H 7.0 buffers,Lebensmittal-Wiss. Technol. 28, 410–418.

    Article  CAS  Google Scholar 

  • Gross, M., and Jaenicke, R. (1994). Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes,Eur. J. Biochem. 221, 617–630.

    Article  CAS  PubMed  Google Scholar 

  • Hashizume, K., Kakiuchi, K., Koyama, K., and Watanabe, T. (1971). Denaturation of soybean protein by freezing,Agric. Biol. Chem. 35, 449–459.

    CAS  Google Scholar 

  • Hayakawa, I., Kajihara, J., Morikawa, K., Oda, M., and Fujio, Y. (1992). Denaturation of bovine serum albumin (BSA) and ovalbumin by high pressure, heat and chemicals,J. Food Sci. 57, 288–292.

    Article  CAS  Google Scholar 

  • Hayakawa, S., and Nakamura, R. (1986). Optimization approaches to thermally induced egg white lysozyme gel,Agric. Biol. Chem. 50, 2039–2046.

    CAS  Google Scholar 

  • Ikeguchi, M., Kuwajima, K., Mitani, M., and Sugai, S. (1986). Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: A comparative study of the folding reactions ofα-lactalbumin and lysozyme,Biochemistry 25, 6965–6972.

    Article  CAS  PubMed  Google Scholar 

  • Ikeguchi, Y., Tanji, H., Kim, K., and Suzuki, A. (1992). Dynamic rheological measurements on heat-induced pressurized actomyosin gels,J. Agric. Food Chem. 40, 1751–1755.

    Article  Google Scholar 

  • Ivanov, I. I., Berg, Yu. N., and Lebedeva, N. A. (1960). Changes in some properties of myosin, actomyosin and actin induced by high pressure,Biokhimiya 25, 505–510.

    CAS  Google Scholar 

  • Jensen, E. V. (1959). Sulfhydryl-disulfide interchange,Science 130, 1319–1323.

    Article  CAS  PubMed  Google Scholar 

  • Joly, M. (1968).A Physico-Chemical Approach to the Denaturation of Proteins, Mir; Moscow, pp. 20–22 [in Russian].

    Google Scholar 

  • Kato, A., and Takagi, T. (1988). Formation of intermolecularβ-sheet structure during heat denaturation of ovalbumin,J. Agric. Food Chem. 36, 1156–1159.

    Article  CAS  Google Scholar 

  • Kronman, M. J. (1989). Metal-ion binding and the molecular conformational properties ofα-lactalbumin,Crit. Rev. Biochem. Mol. Biol. 24, 565–667.

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima, K., Ikeguchi, M., Sugawara, T., Hiraoka, Y., and Sugai, S. (1990). Kinetics of disulfide bond reduction inα-lactalbumin by dithiothreitol and molecular basis of superreactivity of the Cys6-Cys120 disulfide bond,Biochemistry 29, 8240–8249.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4,Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lozinsky, V. I., and Golovina, T. O. (1992). Some kinetic features of chemical reactions of SH-bearing biopolymers in frozen aqueous systems, inProceedings 2nd International Conferences “Advances in Modern Cryobiology,” Kharkov, Ukraine, pp. 103–104.

  • Lozinsky, V. I., Golovina, T. O., Vainerman, E. S., and Rogozhin, S. V. (1989). Variation of the amount of the titrated SH-groups in thiol-derivative of poly(acrylamide) in the course of freezing of its aqueous solutions,Vysokomol. Soedin. 31A, 334–338 [in Russian].

    Google Scholar 

  • Maillart, P., and Ribadeau Dumas, B. (1988). Preparation ofβ-lactoglobulin andβ-lactoglobulin-free proteins from whey retentate by NaCl salting out at lowpH,J. Food Sci. 53, 743–752.

    Article  Google Scholar 

  • Provencher, S. W. (1982). Contin: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,Computer Phys. Commun. 27, 229–242.

    Article  Google Scholar 

  • Provencher, S. W., and Glöckner, J. (1981). Estimation of globular protein secondary structure from circular dichroism,Biochemistry 20, 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Rao, K. R., and Brew, K. (1989). Calcium regulates folding and disulfide-bond formation inα-lactalbumin,Biochem. Biophys. Res. Commun. 163, 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  • Relkin, P., Launay, B., and Eynard, L. (1993). Effect of sodium and calcium addition on thermal denaturation of apo-α-lactalbumin: A differential scanning calorimetry study,J. Dairy Sci. 76, 36–47.

    Article  CAS  Google Scholar 

  • Stauff, J., Barthel, H., Haenicke, R., Krekel, R., and Ühlein, E. (1961). Die Wärmeaggregation von Proteinen in Lösungen,Kolloid Z. 178, 128–142.

    Article  CAS  Google Scholar 

  • Suzuki, K., Miyosawa, Y., and Suzuki, C. (1963). Protein denaturation by high pressure. Measurements of turbidity of isoelectrical ovalbumin and horse serum albumin,Arch. Biochem. Biophys. 101, 225–228.

    Article  CAS  PubMed  Google Scholar 

  • Tanford, C. (1965).Physical Chemistry of Macromolecules; Khimia, Moscow, pp. 270–272 [in Russian].

    Google Scholar 

  • Tanford, C. (1968). Protein denaturation,Adv. Protein Chem. 23, 121–282.

    Article  CAS  PubMed  Google Scholar 

  • Tongur, V. S. (1949). Pressure effect on the denaturation of the egg protein,Kolloid. Zh. 11, 274–279.

    CAS  Google Scholar 

  • Van, Camp J., and Huyghebaert, A. (1995). High pressure induced gel formation of a whey protein and hemoglobin protein concentrates, inEuropean Symposium “Effects of High Pressure on Foods,” Montpellier, France.

  • Weltlauferk, D. B. (1961). Osmometry and general characterization ofα-lactalbumin,C. R. Trav. Lab. Carlsberg 32, 125–138.

    Google Scholar 

  • Winder, A. F., and Gent, W. L. C. (1971). Correction of light-scattering errors in spectrophotometric protein determinations,Biopolymers 10, 1243–1251.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jegouic, M., Grinberg, V.Y., Guingant, A. et al. Thiol-induced oligomerization of α-lactalbumin at high pressure. J Protein Chem 15, 501–509 (1996). https://doi.org/10.1007/BF01908531

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908531

Key words

Navigation