Skip to main content
Log in

Inhibition of the Na pump—a mechanism in the genesis of cardiac arrhythmias

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

An ATP-driven Na pump maintains the unsymmetrical Na and K distribution across the cell membrane of cardiac cells. An increase of the intracellular Na or extracellular K concentration enhances this active Na transport. About 35 per cent of the actively transported Na is ejected from the cells as a hyperpolarizing outward current. The Na pump influences the cardiac Ca metabolism via the Na−Ca exchange. Inhibition of the pump affects the generation and conduction of the cardiac action potential by various mechanisms. It seems to be involved in the genesis of cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Boyett MB, Fedida D (1984) Changes in the electrical activity of dog cardiac Purkinje fibres at high heart rates. J Physiol (Lond) 350:361–391

    Google Scholar 

  2. Cranefield PF (1975) The conduction of the cardiac impulse. Futura Publishing Company, Mount Kisco, New York, pp 1–404

    Google Scholar 

  3. Cranefield PF (1977) Action potentials, afterpotentials and arrhythmias. Circ Res 41:415–423

    PubMed  Google Scholar 

  4. Eisner DA, Lederer WJ, Vaughan-Jones RD (1981a) The dependence of sodium pumping and tension on intracellular sodium activity in voltage-clamped sheep Purkinje fibres. J Physiol (Lond) 317:163–187

    Google Scholar 

  5. Eisner DA, Lederer WJ, Vaughan-Jones RD (1981b) The effect of rubidium ions and membrane potential on the intracellular sodium activity of sheep Purkinje fibres. J Physiol (Lond) 317:189–205

    Google Scholar 

  6. Ellis D (1977) The effects of external cations and ouabain on the intracellular sodium activity of sheep heart Purkinje fibres. J Physiol (Lond) 273:211–240

    Google Scholar 

  7. Gadsby D (1980) Activation of electrogenic Na+/K+ exchange by extracellular K+ in canine cardiac Purkinje fibers. Proc Natl Acad Sci USA 77:4035–4039

    PubMed  Google Scholar 

  8. Gadsby DC, Cranefield PF (1979) Electrogenic sodium extrusion in cardiac Purkinje fibers. J Gen Physiol 73:819–837

    Article  PubMed  Google Scholar 

  9. Glitsch HG, Kampmann W, Pusch H (1981) Activation of active Na transport in sheep Purkinje fibres by external K or Rb ions. Pflügers Arch 391:28–34

    Article  Google Scholar 

  10. Glitsch HG, Pusch H, Schumacher Th, Verdonck F (1982) An identification of the K activated pump current in sheep Purkinje fibres. Pflügers Arch 394:256–263

    Article  Google Scholar 

  11. Glitsch HG, Reuter H, Scholz H (1970) The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J Physiol (Lond) 209:25–43

    Google Scholar 

  12. Isenberg G, Trautwein W (1974) The effect of dihydro-ouabain and lithium-ions on the outward current in cardiac Purkinje fibers. Evidence for electrogenicity of active transport. Pflügers Arch 350:41–54

    Article  Google Scholar 

  13. Kurachi Y, Noma A, Irisawa H (1981a) Electrogenic sodium pump in rabbit atrio-ventricular node cell. Pflügers Arch 391:261–266

    Google Scholar 

  14. Kurachi Y, Noma A, Irisawa H (1981b) Electrogenic Na pump evidenced by injecting various Na salts into the isolated A-V node cells of rabbit heart. Pflügers Arch 392:89–91

    Article  Google Scholar 

  15. Lederer WJ, Tsien RW (1976) Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J Physiol (Lond) 263:73–100

    Google Scholar 

  16. Noma A, Irisawa H (1974) Electrogenic sodium pump in rabbit sinoatrial node cell. Pfügers Arch 351:177–182

    Article  Google Scholar 

  17. Pitts BJR (1979) Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. Coupling to the sodium pump. J Biol Chem 254:6232–6236

    PubMed  Google Scholar 

  18. Reeves JP, Sutko JL (1980) Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science 208:1461–1464

    PubMed  Google Scholar 

  19. Reuter H (1982) Na−Ca countertransport in cardiac muscle. In: Martonosi A (ed) Membranes and transport, vol 1, Plenum Press, New York London, p 623–631

    Google Scholar 

  20. Reuter H, Seitz N (1968) The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (Lond) 195:451–470

    Google Scholar 

  21. Vassalle M (1970) Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circ Res 27:361–377

    PubMed  Google Scholar 

  22. Verdonck F, Glitsch HG, Pusch H (1982) Importance of electrogenic sodium extrusion for suppression of spontaneous rhythmic activity in rabbit Purkinje fibres. Arch int Physiol Biochim 90:P36-P37 (abstract)

    Google Scholar 

  23. Witt AL, Cranefield PF, Gadsby DC (1981) Electrogenic sodium extrusion can stop triggered activity in the canine coronary sinus. Circ Res 49:1029–1042

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glitsch, H.G. Inhibition of the Na pump—a mechanism in the genesis of cardiac arrhythmias. Basic Res Cardiol 79, 611–619 (1984). https://doi.org/10.1007/BF01908379

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908379

Key Words

Navigation