Basic Research in Cardiology

, Volume 76, Issue 4, pp 394–398 | Cite as

Regional myocardial glucose utilization assessed by (14C) deoxyglucose

  • A. L'Abbate
  • P. Camici
  • M. G. Trivella
  • G. Pelosi
Original Contributions

Key words

regional myocardial metabolish regional myocardial flow autoradiography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sokoloff, L., M. Reivich, C. Kennedy, M. H. Les Rosiers, C. S. Patlak, K.D. Pettigrew, O. Sakurada, M. Shinohara: The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochemistry,28, 897 (1977).Google Scholar
  2. 2.
    Hoffmann, J.I.E., G.D. Buckberg: Transmural variations in myocardial perfusion. In: P. Yu, J. F. Goodwin (ed.); p. 37. Progress in Cardiology Lea and Febiger (Philadelphia 1976).Google Scholar
  3. 3.
    L'Abbate, A., P. Camici, M. G. Trivell, G. Pelosi, L. Taddei, G. Valli, G. F. Placidi: Uneven myocardial glucose utilization as determined by14C-deoxyglucose uptake. Journal of Nuclear Medicine and Allied Sciences23, 4, 167 (1979).PubMedGoogle Scholar
  4. 4.
    L'Abbate, A., M. Marzilli, A. M. Ballestra, P. Camici, M. G. Trivella, G. Pelosi, G. A. Klassen: Opposite transmural gradients of coronary resistance and extravascular pressure in the working dog's heart. Cardiovasc. Res.14, 21 (1980).PubMedGoogle Scholar
  5. 5.
    Kirk, E. S., C. R. Honig: Nonuniform distribution of blood flow and gradients of oxygen tension within the heart. Amer. J. Physiol.207, 661, (1964).PubMedGoogle Scholar
  6. 6.
    Gamble, W. J., C. G. La-Farge, D. C. Filer, J. Weisul, R. G. Monroe: Regional coronary venous oxygen saturation and myocardial oxygen tension following abrupt changes in ventricular pressure in the isolated dog heart. Circulat. Res.34, 672 (1974).PubMedGoogle Scholar
  7. 7.
    Dunn, R. B., K. M. McDonough, D. M. Griggs Jr.: High energy phosphate stores and lactate levels in different layers of the canine left ventricle during reactive hyperemia. Circulat. Res.44, 788 (1979).PubMedGoogle Scholar
  8. 8.
    Jedeikin, L. A.: Regional distribution of glycogen and phosphorylase in the ventricles of the heart. Circulat. Res.14, 202 (1964).PubMedGoogle Scholar
  9. 9.
    Lundsgaard-Hansen, P., C. Meyer, H. Riedwyl: Transmural gradients of glycolytic enzyme activities in left ventricular myocardium. Pflügers Arch. Ges. Physiol.,297, 89 (1967).CrossRefGoogle Scholar
  10. 10.
    Spotniz, H. M., E. H. Sonnenblick, D. Spiro: Relation of ultrastructure to function in the intact heart: sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circulat. Res.18, 49 (1966).PubMedGoogle Scholar
  11. 11.
    Marzilli, M., H. N. Sabbah, P. D. Stein: Contractile performance of the suben docardial and subepicardial layers of the canine left ventricle. Circulation59, 60, Suppl. II 213 (1979).Google Scholar
  12. 12.
    Micic, D., I. Klatzo, M. Spatz: The effect of sodium pentobarbital on some mitochondrial enzymes. J. Neurochim.30, 1627 (1977).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1981

Authors and Affiliations

  • A. L'Abbate
    • 1
  • P. Camici
    • 1
  • M. G. Trivella
    • 1
  • G. Pelosi
    • 1
  1. 1.C.N.R. Clinical Physiology Institute and Istituto di Patologia Medica IUniversity of PisaPisaItaly

Personalised recommendations