Basic Research in Cardiology

, Volume 79, Issue 2, pp 244–252 | Cite as

Dihydroergotamine decreases the blood content in the skeletal musculature but etilefrine hydrochloride in the splanchnic region in man

  • J. O. Arndt
  • A. Höck
  • K. Inoue
Original Contributions
  • 20 Downloads

Summary

Dihydroergotamine (DHE, Dihydergot®) constricts the capacitance vessels of the striated musculature about twice as strong as etilefrine hydrochloride (E, Effortil®) for the same increment in central venous pressure. This and the additive effects of both agents on central venous pressure suggested that E may constrict primarily splanchnic capacitance vessels, a hypothesis, that was tested here by looking at the regional distribution of99Tc-marked erythrocytes in healthy volunteers.

With the subjects supine under a gamma camera the radioactivity was recorded along with central venous pressure, heart rate, and arterial pressure and evaluated for various regions. E was infused twice at a rate of 5 μg/kg per minute before and after the injection of DHE (7.5 μg/kg).

E reduced strongly and selectively the radioactivity in the splanchnic area, not however in skeletal muscle. The reverse held for DHE. Both agents increased the counting rates in the thorax and also central venous pressure, effects which were additive when the two drugs acted together.

E preferentially expels blood from the splanchnic vasculature, but DHE from skeletal muscle. The effects add and redistribute blood in favour of the intrathoracic circulation so that the combination of the two agents could be used to advantage for the treatment of cardiac filling disturbances.

Key words

dihydroergotamine etilefrine blood volume redistribution cardiac filling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander RS (1954) The influence of constrictor drugs on the distensibility of the splanchnic venous system, analyzed on the basis of an aortic model. Circ Res 2:140–147PubMedGoogle Scholar
  2. 2.
    Berde B, Schild HO (1978) Ergot Alkaloids and related Compounds. Handb exp Pharmacol 49. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Echt M, Lange L (1972) Die Beeinflussung des venösen Gefäßtonus durch Effortil. Münch med Wschr 114:1418–1420Google Scholar
  4. 4.
    Echt M, Düweling J, Gauer OH, Lange (1974) Effective compliance of the total vascular bed and the intrathoracic compartment derived from changes in central venous pressure induced by volume changes in man. Circ Res 34:61–68Google Scholar
  5. 5.
    Dehnen-Seipel H, Arndt JO, Bircks W (1978) Die Compliance der intra- und extrathorakalen Gefäßabschnitte des Menschen. In: Schaper W, Gottwik MG (Hrsg): Elektrokardiodiagnostik. Der kardiale Notfall. Verhandlungen der Deutschen Gesellschaft für Kreislaufforschung, 44. Tagung. 161, DarmstadtGoogle Scholar
  6. 6.
    Gauer OH, Henry JP, Sieker HO, Edelberg R (1956) Changes in central venous pressure after moderate hemorrhage and transfusion in man. Circ Res 4:79–84PubMedGoogle Scholar
  7. 7.
    Glaser EM, McPherson DR, Prior KM, Charles E (1954) Radiological investigation of the effects of hemorrhage on the lungs, liver and spleen, with special reference to the storage of blood in man. Clin Sci 13:461–473PubMedGoogle Scholar
  8. 8.
    Höck A, Höck A, Vyska K, Freundlieb Ch, Feinendegen LE (1977) A new radiographic method for continuously measuring changes of cardiac volume under exercise. In: Nuklearmedizin (Stand und Zukunft). Schattauer, Stuttgart New YorkGoogle Scholar
  9. 9.
    Inoue H, Inoue K, Arndt JO (1980) Die Interaktion von Dihydroergotamin und Etilefrinhydrochlorid an den Kapazitätsgefäßen der Wade des Menschen. Z Kard 69:280–286Google Scholar
  10. 10.
    Kobinger W (1965) Über die unterschiedliche Beeinflussung von Widerstand- und Kapazitätsgefäßen durch verschiedene Sympathikomimetika. Arch exp Path Pharmakol 252:103–121Google Scholar
  11. 11.
    Laube L, Reichelt W, Arndt JO (1977) Vergleichende Untersuchungen über die Venenwirksamkeit des ADH-Abkömmlings Orthinin-8-Vasopressin sowie von Dihydroergotamin am kreislaufgesunden Menschen. Herz/Kreisl 9:295–302Google Scholar
  12. 12.
    Mellander S (1966) Comparative effects of acetalcholine, butylnorsynephrine (vasculat), noradrenaline and ethyl-adrianol (effortil) on resistance, capacitance, and precapillary sphincter vessels and capillary filtration in cat skeletal muscle. Angiologica 3:77–99PubMedGoogle Scholar
  13. 13.
    Mellander S, Nordenfelt I (1971) Comparative effects of dihydroergotamine and noradrenaline on resistance, exchange and capacitance functions in the peripheral circulation. Clin Sci 39:183–201Google Scholar
  14. 14.
    Mostbeck A, Partsch H, Peschl L (1977) Änderungen der Blutvolumenverteilung im Ganzkörper unter physikalischen und pharmakologischen Maßnahmen. VASA 6:137–142PubMedGoogle Scholar
  15. 15.
    Shepherd IT (1980) Reflex control of the venous system in man. In: Advances in physiological sciences. Vol 9, Kováck AGB, Sandor P, Kollai M (eds). Pergamon PressGoogle Scholar
  16. 16.
    Smith TD, Richards P (1976) A simple kit for the preparation of99mTc-labelled red blood cells. J nucl Med 17:126PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1984

Authors and Affiliations

  • J. O. Arndt
    • 1
    • 2
  • A. Höck
    • 1
    • 2
  • K. Inoue
    • 1
    • 2
  1. 1.Abteilung für Experimentelle Anaesthesiologie der Universität DüsseldorfDüsseldorf 1FRG
  2. 2.Institut für Medizin der Kernforschungsanlage Jülich(FRG)

Personalised recommendations