Skip to main content
Log in

Calcium antagonists: definition and mode of action

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The term “calcium antagonist” has been used for more than a decade to describe a group of drugs whose negative inotropism is overcome by calcium. Because this term lacks specificity with respect to a precise mode of action, and implies a classical receptor-agonist-antagonist relationship, its continued use should be questioned. Drugs belonging to this group are verapamil, D600, nifedipine and diltiazem. They inhibit the slow inward current of the action potential and would more appropriately be called “slow channel inhibitors”. The group is heterogenous and may have to be subclassified.

The negative inotropism of these drugs can be attributed to a reduction of the slow calcium current. The function of most intracellular organelles is unaffected. Studies with radioactively labelled verapamil show tight binding to glycolipids or glycoproteins in the sarcolemma. Consequent change in the conformational state of the cell membrane could inhibit the slow calcium current.

The ability of these drugs to protect heart muscle against the deleterious effects of ischaemia and reperfusion may reflect their negative inotropism, with consequent maintenance of tissue ATP above the levels needed to maintain intracellular Ca2+ homeostasis, rather than a direct inhibitory effect on calcium influx during ischaemia or on reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Black, J. W.: Ahlquist and the development of beta-adrenoceptor antagonists. Postgrad. Med. J. 52, Suppl.4, 11 (1976).

    Google Scholar 

  2. Fleckenstein, A., H. Tritthart, B. Fleckenstein, et al.: A new group of competitive Ca-antagonists (Iproveratril, D600, Prenylamine) with highly potent inhibitory effects on excitation-contraction coupling in mammalian myocardium. Pflügers Arch. ges. Physiol.307, R25 (1969).

    Google Scholar 

  3. Fleckenstein, A.: Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions. In: Calcium and the Heart (Harris, P., L. Opie, ed). p. 135. (London-New York, Academic, 1970/1971).

    Google Scholar 

  4. Fleckenstein, A., H. Tritthart, H. J. Doring, et al.: Bay a 1040 — ein hochaktiver Ca++-antagonistischer Inhibitor der elektro-mechanischen Koppelungs-prozesse im Warmblüter-Myokard. Arzneim.-Forsch.22, 22 (1972).

    Google Scholar 

  5. Vater, W., G. Kroneberg, F. Hoffmeister, et al.: Zur Pharmakologie von 4-(2 Nitrophenyl)-2,6-dimethyl-1,4-dihydropyridin-3,5-dicarbonsäuredimethylester (Nifedipin, Bay a 1040). Arzneim.-Forsch.22, 1 (1972).

    Google Scholar 

  6. Sato, M., T. Nagao, I. Yamaguchi, et al.: Pharmacological studies on a new 1,5-benzothiazepine derivative (CRD-401 — Diltiazem). Arzneim.-Forsch.21, 1338 (1971).

    Google Scholar 

  7. Nakajima, H., M. Hoshiyama, K. Yamashita, et al.: Effect of diltiazem on electrical and mechanical activity of isolated cardiac ventricular muscle of guinea pig. Japan. J. Pharmacol.25, 383 (1975).

    Google Scholar 

  8. Nayler, W. G., I. McInnes, J. B. Swann, et al.: Some effects of isoptin (Iproveratril) on the cardiovascular system. J. Pharm. Exp. Therap.161, 247 (1978).

    Google Scholar 

  9. Kohlhardt, M., B. Bauer, H. Krause, et al.: Selective inhibition of the transmembrane Ca conductivity of mammalian myocardial fibres by Ni, Ca and Mn ions. Pflügers Arch. ges. Physiol.338, 115 (1973).

    Google Scholar 

  10. Beeler, G. W., H. Reuter: Membrane calcium current in ventricular myocardial fibres. J. Physiol. (Lond.)207, 191 (1970).

    Google Scholar 

  11. Weishaar, R., K. Ashikawa, R. J. Bing: Effect of diltiazem, a calcium antagonist on myocardial ischaemia. Amer. J. Cardiol.43, 1137 (1979).

    PubMed  Google Scholar 

  12. Fleckenstein, A.: A specific pharmacology of calcium in the myocardium, cardiac pacemakers and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol.17, 149 (1977).

    Google Scholar 

  13. Kohlhardt, M., B. Bauer, H. Krause, A. Fleckenstein: Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by use of specific inhibitors. Pflügers Arch. ges. Physiol.335, 309 (1972).

    Google Scholar 

  14. Sperelakis, N., J. A. Schneider: A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Amer. J. Cardiol.37, 1079 (1976).

    PubMed  Google Scholar 

  15. Kass, R. S., R. W. Tsien: Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibres. J. Gen. Physiol.66, 169 (1975).

    Google Scholar 

  16. Bayer, R., D. Kalusche, R. Kaufmann, R. Mannhold: Inotropic and electrophysiological actions of verapamil and D600 in mammalian myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol.290, 81 (1975).

    Google Scholar 

  17. Langer, G. A.: The structure and function of the myocardial cell surface. Amer. J. Physiol.235, H461 (1978).

    Google Scholar 

  18. Katz, A. M., J. Dunnett, D. I. Repke, et al.: Control of calcium permeability in the sarcoplasmic reticulum. FEBS Lett67, 207 (1976).

    PubMed  Google Scholar 

  19. Fabiato, A., F. Fabiato: Calcium release from the sarcoplasmic reticulum. Circulat. Res.40, 119 (1977).

    PubMed  Google Scholar 

  20. Nayler, W. G., J. Szeto: Effect of verapamil on contractility, oxygen utilization and calcium exchangeability in mammalian heart muscle. Cardiovasc. Res.6, 120 (1972).

    PubMed  Google Scholar 

  21. Kentish, J. C., W. G. Nayler: Ca2+-dependent tension generation in chemicallyskinned cardiac trabeculae. J. Physiol.284, 90P (1978).

    Google Scholar 

  22. Reuter, H., H. Scholz: The regulation of the calcium conductance of cardiac muscle by adrenaline. J. Physiol. (Lond.)264, 49 (1977).

    Google Scholar 

  23. Watanabe, A. M., H. R. Besch: Cyclic adenosine monophosphate modulation of slow calcium influx channels in guinea pig hearts. Circulat. Res.35, 316 (1974).

    Google Scholar 

  24. Nayler, W. G., P. A. Poole-Wilson, A. Williams, R. Ferrari: Hypoxia and calcium. J. Mol. Cell. Cardiol.11, 683 (1979).

    PubMed  Google Scholar 

  25. Nayler, W. G., R. Seabra-Gomes: Protective effect of methylprednisolone sodium succinate on the ultrastructure and resting tension of hypoxic heart muscle. Cardiovasc. Res.12, 91 (1978).

    PubMed  Google Scholar 

  26. Guanieri, C., R. Ferrari, W. G. Nayler: Effect of α tocopherol on hypoxic-perfused and reoxygenated rabbit heart. J. Mol. Cell. Cardiol.10, 893 (1978).

    PubMed  Google Scholar 

  27. Noble, D.: “The Initiation of the Heart Beat” (Oxford, Clarendon Press, 1975).

    Google Scholar 

  28. Nabata, H.: Effects of calcium-antagonistic coronary vasodilators on myocardial contractility and membrane potentials. Japan. J. Pharmacol.27, 239 (1977).

    Google Scholar 

  29. Rougier, O., G. Vassort, D. Garmer, et al.: Existence and role of a slow inward current during the frog atrial action potential. Pflügers Arch. ges. Physiol.308, 91 (1969).

    Google Scholar 

  30. Reuter, H.: Divalent cations as charge carriers in excitable membranes. Progr. Biophys. Mol. Biol.26, 1 (1973).

    Google Scholar 

  31. Bassingthwaighte, J. B., C. H. Fry, J. A. S. McGuigan: Relationship between internal calcium and outward current in mammalian ventricular muscle; a mechanism for the control of the action potential duration. J. Physiol. (London)262, 15 (1976).

    Google Scholar 

  32. Kenyon, J. L., W. R. Gibbons: Effects of low-chloride solutions on action potentials of sheep cardiac Pukinje fibres. J. Gen. Physiol.70, 635 (1977).

    PubMed  Google Scholar 

  33. Salkawa, T., Y. Nagamoto, M. Arita: Electrophysiologic effects of diltiazem, a new slow channel inhibition, on canine cardiac fibres. Jap. Heart J.18, 235 (1975).

    Google Scholar 

  34. Isenberg, G.: Is potassium conductance of cardiac Purkinje fibres controlled by Ca2 i Nature (Lond.)253, 273 (1975).

    Google Scholar 

  35. Pappano, A. J.: Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibres depolarised by potassium. Circulat. Res.27, 379 (1970).

    PubMed  Google Scholar 

  36. Langer, G. A.: Ionic movements and the control of contraction. In: The Mammalian Myocardium (Langer, G. A., Brady, A. J., ed.) p. 193. (New York, J. Wiley & Sons, 1974).

    Google Scholar 

  37. Langer, G. A., S. D. Serena, L. M. Nudd: Localization of contractile-dependent Ca: comparison of Mn and verapamil in cardiac and skeletal muscle. Amer. J. Physiol.229, 1003 (1975).

    PubMed  Google Scholar 

  38. Shen, A. C., R. B. Jennings: Kinetics of calcium accumulation in acute myocardial ischemic injury. Amer. J. Path.67, 441 (1972).

    PubMed  Google Scholar 

  39. Coraboeuf, E., G. Vassort: Effects of some inhibitors of ionic permeabilities in ventricular action potential and contraction of rat and guinea pig hearts. J. Electrocardiol.1, 19 (1968).

    PubMed  Google Scholar 

  40. Schneider, J. A., N. Sperelakis: Slow Ca2+ and Na+ responses induced by isoproterenol and methylxanthines in isolated perfused guinea pig hearts exposed to elevated K+. J. Mol. Cell Cardiol.7, 249 (1975).

    PubMed  Google Scholar 

  41. Kohlhardt, M., A. Fleckenstein: Inhibition of the slow inward current by nifedipine in mammalian ventricular myocardium. Naunyn-Schmiedeberg's Arch. Pharm.298, 267 (1977).

    Google Scholar 

  42. Kohlhardt, M., Z. Mnich: Studies on the inhibitory effect of verapamil on the slow inward current in mammalian ventricular myocardium. J. Mol. Cell. Cardiol.10, 1037 (1978).

    PubMed  Google Scholar 

  43. Nawrath, H., R. E. Ten Eick, T. F. McDonald, et al.: On the mechanism underlying the action of D-600 on slow inward current and tension in mammalian myocardium. Circulat. Res.40, 408 (1977).

    PubMed  Google Scholar 

  44. Nayler, W. G., J. Mas-Oliva, A. J. Williams: Sarcolemmal calcium transport and drug action. In: Recent Advance in Cardiac Structure and Metabolism (N. Dhalla, ed.) (University Park Press, Baltimore. 1980 in press).

    Google Scholar 

  45. Nayler, W. G., J. Mas-Oliva, A. J. Williams: Cardiovascular receptors and calcium. Circulat. Res. (1980) in press.

  46. Ehara, T., R. Kaufmann: The voltage and time-dependent effects of (−)+verapamil on the slow inward current in isolated cat ventricular muscle. J. Pharm. Exp. Therap.207, 49 (1978).

    Google Scholar 

  47. Tzivoni, D., G. Merin, D. Eimerl, et al.: The marked myocardial depressant effect of verapamil. IS J. Med. Sci., 933 (1978).

  48. Ferunz, J., J. L. Easthope, W. S. Aronow: Effects of verapamil on myocardial performance in coronary deseae. Circulation59, 313 (1978).

    Google Scholar 

  49. Selwyn, A. P., E. Welman, K. Fox, P. Horlock, et al.: The effects of nifedipine on acute experimental myocardial ischaemia and infarction in dogs. Circulat. Res.44, 17 (1979).

    Google Scholar 

  50. Krikler, D.: Verapamil in cardiology. Eur. J. Cardiol.2, 3 (1974).

    PubMed  Google Scholar 

  51. Zipes, D. P., J. C. Fisher: Effects of agents which inhibit slow channel sinus node automaticity and atrioventricular conduction. Circ. Res.34, 184 (1974).

    PubMed  Google Scholar 

  52. Henry, P. D., R. Schuchleib, L. J. Borda: Effects of nifedipine on myocardial perfusion and ischaemic injury in dogs. Circulat. Res.43, 372 (1978).

    PubMed  Google Scholar 

  53. Robb-Nicholson, C., W. D. Corrie, A. S. Wechsler: Effects of verapamil on myocardial tolerance to ischaemia arrest. Circulation58, Suppl. 1, 119 (1978).

    PubMed  Google Scholar 

  54. Nayler, W. G., A. Grau, A. Slade: A protective effect of verapamil on hypoxic heart muscle. Cardiovasc. Res.10, 650 (1976).

    PubMed  Google Scholar 

  55. Henry, H. P., R. Shuchleib, J. Davis, et al.: Myocardial contracture and accumulation of mitochondrial calcium in ischaemic rabbit heart. Amer. J. Physiol.233, H677 (1977).

    Google Scholar 

  56. Reimer, K. A., J. E. Lowe, R. B. Jennings: Effect of the calcium antagonist verapamil on necrosis following temporary coronary artery occlusion in dogs. Circulation55, 581 (1977).

    PubMed  Google Scholar 

  57. Nayler, W. G., E. Fassold, C. Yepez: The pharmacological protection of mitochondrial function in hypoxic heart muscle: effect of verapamil, propranolol and methylprednisolone. Cardiovasc. Res.12, 151 (1978).

    Google Scholar 

  58. Nago, T., M. A. Matlib, D. Franklin, R. W. Millard, A. Schwartz: Effects of diltiazem, a calcium antagonist, on regional myocardial function and mitochondria after brief coronary occlusion. J. Mol. Cell. Cardiol.12, 29 (1980).

    PubMed  Google Scholar 

  59. Maseri, A., R. Mimmo, S. Chierchia, et al.: Coronary artery spasm as a cause of acute myocardial ischaemia in man. Chest.68, 625 (1975).

    Google Scholar 

  60. Shen, A. C., R. B. Jenning: Myocardial calcium and magnesium in acute ischaemic injury. Amer. J. Path.67, 418 (1972).

    Google Scholar 

  61. Jennings, R. B., C. E. Ganote: Mitochondrial structure and function in acute myocardial ischaemic injury. Circulat. Res.38 (Suppl.) 80 (1976).

    Google Scholar 

  62. Chance, B.: The energy-linked reaction of calcium with mitochondria. J. Biol. Chem.240, 2729 (1965).

    PubMed  Google Scholar 

  63. Fleckenstein, A., J. Janke, H. J. Doring, et al.: Myocardial fibre necrosis due to intracellular calcium overload — a new principle in cardiac pathophysiology. In: Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. 4, p. 563 (Baltimore, University Park Press 1974).

    Google Scholar 

  64. Lakatta, E. G., W. G. Nayler, P. A. Poole-Wilson: Calcium overload and mechanical function in post hypoxic myocardium: biphasic effect of pH during hypoxia. Eur. J. Cardiol.10, 77 (1979).

    PubMed  Google Scholar 

  65. Reimer, K. A., J. E. Lowe, R. B. Jennings: Effect of calcium antagonist verapamil on necrosis following temporary coronary occlusion in dogs. Circulation55, 581 (1977).

    PubMed  Google Scholar 

  66. Clark, R. E., I. Y. Christlied, P. D. Henry, A. E. Fischer, J. D. Nora, J. R. Williamson, B. E. Sobel: Nifedipine: A Myocardial Protective Agent. Amer. J. Cardiol.44, 825 (1979).

    PubMed  Google Scholar 

  67. Magee, P. G., J. T. Flaherty, T. J. Bixler, D. Glower, T. J. Gardner, D. H. Buckley, V. L. Gott: K Comparison of myocardial protection with nifedipine and potassium. Circulation60, 1151 (1978).

    Google Scholar 

  68. Nayler, W. G., C. E. Yepez, P. A. Poole-Wilson: The effect of β-adrenoceptor and Ca2+-antagonist drugs on the hypoxia-induced increase in resting tension. Cardiovasc. Res.12, 666 (1978).

    PubMed  Google Scholar 

  69. Kaltenbach, M., W. Schulz, G. Kober: Effects of nifedipine after intravenous and intracoronary administration. Amer. J. Cardiol.44, 832 (1979).

    PubMed  Google Scholar 

  70. Henry, P. D., R. Shuchleib, R. E. Clark, J. E. Perez: Effect of nifedipine on myocardial ischaemia: analysis of collateral flow, pulsatile heart and regional muscle shortening. Amer. J. Cardiol.44, 817 (1979).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 figures and 1 table

The investigations were carried out during the tenure of a grant from the Medical Research Council of Great Britain and the NH and MRC of Australia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayler, W.G., Poole-Wilson, P. Calcium antagonists: definition and mode of action. Basic Res Cardiol 76, 1–15 (1981). https://doi.org/10.1007/BF01908159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908159

Key words

Navigation