Skip to main content
Log in

Decrease in ventricular beta-adrenergic receptors in trained diabetic rats

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The effects of physical training on beta-adrenergic receptors were evaluated in heart ventricular tissue of diabetic rats. Mild diabetes mellitus was induced in rats with streptozotocin (45 mg/kg, iv). They were then submitted to a progressive 10-week running programme on a treadmill. Binding studies were done at six different concentrations of (−) [3H] dihydroalprenolol (0.5 to 14.4 nM) with ventricular membrane preparations from control (n=13), sedentary diabetic (n=9) and trained diabetic rats (n=10). Direct linear plot analysis of the data revealed that the total number of beta-adrenoceptors was reduced in sedentary diabetic rats as compared to control (2231±207 vs 2922±211 fmol/ventricules; P<0.05); however, there was no significant change in the receptor density expressed as fmol/mg of membrane protein (40±3 vs 43±3; P>0.05). On the other hand, the beta-adrenergic binding sites were decreased in trained diabetic rats, either expressed as the total number of receptors (1920±179 vs 2922±211; P<0.01), or as fmol/mg of membrane protein (30±3 vs 43±3; P<0.01). There was no significant change in the dissociation constant (KD) of these receptors between groups (KD=4.08±0.51, 4.69±0.93 and 2.88±0.39 nM respectively for control, sedentary diabetic and diabetic trained animals). The basal epinephrine concentration was significantly increased in trained diabetic rats (102±21 pg/ml vs 47±7 for control (P<0.05) and vs 49±9 for sedentary diabetic (P<0.05). These data indicate that a programme of physical training in diabetic rats can reduce both the total number and the density of beta-adrenoceptors in heart ventricular tissue, possibly by increasing the basal epinephrine secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34:29–34

    PubMed  Google Scholar 

  2. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038

    PubMed  Google Scholar 

  3. Czyzk A, Krolewski AS, Szablowska S, Alot A, Kopczynski J (1980) Clinical course of myocardial infarction among diabetic patients. Diabetes Care 3:526–529

    PubMed  Google Scholar 

  4. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmed MR, Haider B (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:885–899

    Google Scholar 

  5. Regan TJ, Ettinger PO, Khan MI, Jesrani MU, Lyons MM, Oldewurtel HA, Weber M (1974) Altered myocardial function and metabolism in chronic diabetes mellitus without ischemia in dogs. Circ Res 35:222–237

    Google Scholar 

  6. Feuvray D, Idell-Wenger JA, Neely JR (1979) Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res 44:322–329

    PubMed  Google Scholar 

  7. Senges J, Bradhmann J, Pelzer D, Hasslacher C, Weihe E, Kübler W (1980) Altered cardiac automaticity and conduction in experimental diabetes mellitus. J Mol Cell Cardiol 12:1341–1351

    PubMed  Google Scholar 

  8. Giachetti A (1978) The functional state of sympathetic nerves in spontaneously diabetic mice. Diabetes 27:969–974

    PubMed  Google Scholar 

  9. McPage MB, Watkins PJ (1977) The heart in Diabetes: Autonomic neuropathy and cardiomyopathy. Clin Endocr Metab 6:377–388

    Google Scholar 

  10. Richter EA, Ruderman NB, Schneider SH (1981) Diabetes and exercise. Am J Med 70:201–209

    PubMed  Google Scholar 

  11. Clausen JP (1977) Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev 57:779–815

    PubMed  Google Scholar 

  12. Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Ann Rev Physiol 39:221–251

    Google Scholar 

  13. Stone HL (1980) The heart and exercise training. In Hearts and heart-like organs, vol 2 physiology, edited by Bourne GH. New York, Academic Press, pp 389–418

    Google Scholar 

  14. Sylvestre-Gervais L, Nadeau A, Nguyen MH, Tancrède G, Rousseau-Migneron S (1982) Effects of physical training on beta-adrenergic receptors in rat myocardial tissue. Cardiovasc Res 16:530–534

    PubMed  Google Scholar 

  15. Savarese JJ, Berkowitz BA (1979) Beta-adrenergic receptor decrease in diabetic rat hearts. Life Sci 25:2075–2078

    PubMed  Google Scholar 

  16. Heyliger CE, Pierce GN, Singal PK, Beamish RE, Dhalla NS (1982) Cardiac alpha-and beta-adrenergic receptor alterations in diabetic cardiomyopathy. Basic Res Cardiol 77:610–618

    PubMed  Google Scholar 

  17. Berger M, Berchtold P, Cuppers HJ, Drost H, Kley HK, Muller WA, Wiagelmann W, Zimmermann-Telschow H, Gries FA, Kruskemper HL, Zimmermann H (1977) Metabolic and hormonal effects of muscular exercise in juvenile type diabetes. Diabetologia 13:355–365

    PubMed  Google Scholar 

  18. Pattengale PK, Holloszy JO (1967) Augmentation of skeletal muscle myoglobin by a program of treadmill running. Am J Physiol 213:783–785

    PubMed  Google Scholar 

  19. Popovic V, Popovic P (1960) Permanent cannulation of aorta and vena cava in rats and ground squirrels. J Appl Physiol 15:727–728

    PubMed  Google Scholar 

  20. Nadeau A, Morissette J (1973) Une nouvelle méthode simple de transformation linéaire de la courbe standard dans le dosage radioimmunologique de l'insuline. Union Med Can 102:566–569

    PubMed  Google Scholar 

  21. Da Prada M, Zurcher G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within the femtomole range. Life Sci 19:1161–1174

    PubMed  Google Scholar 

  22. Glaubiger G, Lefkowitz RJ (1977) Elevated beta-adrenergic receptor number after chronic propranolol treatment. Biochem Biophys Res Commun 78:720–725

    PubMed  Google Scholar 

  23. Lowry OH, Rosenbrough NJ, Farr AL, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  24. Cornish-Bowden A, Eisenthal R (1974) Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods. Biochem J 139:721–730

    PubMed  Google Scholar 

  25. Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720

    PubMed  Google Scholar 

  26. Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    Google Scholar 

  27. Woosley JT, Muldoon TG (1977) Comparison of the accuracy of the Scatchard, Lineweaver-Burk and direct linear plots for the analysis of steroid-protein interactions. J Steroid Biochem 8:625–629

    PubMed  Google Scholar 

  28. Cressie NAC, Keightley DD (1979) The underlying structure of the direct linear plot with application to the analysis of hormone-receptor interactions. J Steroid Biochem 11:1173–1180

    PubMed  Google Scholar 

  29. Dixon WJ, Massey Jr FJ (1969) Introduction to statistical analysis. 3th edition. McGraw-Hill, Inc New York

    Google Scholar 

  30. Junod A, Lambert AE, Stauffacher W, Renold AE (1969) Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest 48:2129–2139

    PubMed  Google Scholar 

  31. Tancrède G, Rousseau-Migneron S, Nadeau A (1983) Long-term changes in the diabetic state induced by different doses of streptozotocin in rats. Br J Exp Path 64:117–123

    Google Scholar 

  32. Williams PH, Balvin HLC, Sahms RH, Sichl D, Morgan HE (1980) Effects of diabetes on protein turnover in cardiac muscle. Am J Physiol 239:E178-E185

    PubMed  Google Scholar 

  33. Winder WW, Hickson RC, Hagberg JM, Ehsani AA, McLane JA (1979) Training-induced changes in hormonal and metabolic responses to submaximal exercise. J Appl Physiol: Respirat Environ Exercise Physiol 46:766–771

    Google Scholar 

  34. Williams LJ, Lefkowitz RJ (1978) Receptor binding studies in adrenergic pharmacology. New York, Raven Press

    Google Scholar 

  35. Depocas F, Behrens WA (1977) Effects of handling, decapitation, anesthesia, and surgery on plasma noradrenaline levels in the white rat. Can J Physiol Pharmacol 55:212–219

    PubMed  Google Scholar 

  36. Galbo H, Richter EA, Holst JJ, Christensen NJ (1977) Diminished hormonal responses to exercise in trained rats. J Appl Physiol: Respirat Environ Exercise Physiol 43:953–958

    Google Scholar 

  37. Moreau D, Guilland JC, Noirot P, Malval M (1979) Etude chez le rat des modifications nutritionnelles, cardiaques et adrénergiques induites par l'entraînement. J Physiol 75:755–764

    Google Scholar 

  38. Tancrède G, Rousseau-Migneron S, Nadeau A (1982) Beneficial effects of physical training in rats with a mild streptozotocin-induced diabetes mellitus. Diabetes 31:406–409

    PubMed  Google Scholar 

  39. Tan MH, Bonen A, Garner JB, Belcastro AN (1982) Physical training in diabetic rats: effects on glucose tolerance and serum lipids. J Appl Physiol Respirat Environ Exercise Physiol 52:1514–1518

    Google Scholar 

  40. Becker-Zimmermann K, Berger M, Berchtold P, Gries FA, Herberg L, Schwenen M (1982) Treadmill training improves intravenous glucose tolerance and insulin sensitivity in fatty Zucker rats. Diabetologia 22:468–474

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sylvestre-Gervais, L., Nadeau, A., Tancrède, G. et al. Decrease in ventricular beta-adrenergic receptors in trained diabetic rats. Basic Res Cardiol 79, 432–439 (1984). https://doi.org/10.1007/BF01908143

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908143

Key words

Navigation