Skip to main content
Log in

Metabolism of poly (A)-containing mRNA in myocardium under normal physiological conditions and compensatory cardiac hyperfunction

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Two fractions of mRNA poly A+ and poly A mRNA have been found in rat heart muscle by the method of affinity chromatography. These fractions amount to 30 and 70% of the total RNA respectively. The relationship between poly A+ and poly AmRNA in myocardium does not alter in heart hyperfunction and aging. The lifespan of mRNA reduces to 2–3 hours in the beginning of the process of myocardium hyperfunction development; the lifespan of mRNA does not differ from the controls in prolonged heart hyperfunction (6 months). The rate of poly A+mRNA synthesis increases by 70% compared to controls in the early stage of heart hyperfunction; it falls below the control level in long-term hypertrophied myocardium. This decrease in the rate of mRNA transcription in compensatory heart hypertrophy can play an important role in wear of the organ and in premature development of aging changes in the heart.

Zusammenfassung

Es wurden mit Hilfe der Affinitätschromatographie zwei mRNA-Fraktionen, nämlich poly A+ und poly A, im Herzmuskel der Ratte nachgewiesen. Diese Fraktionen entsprachen 30% beziehungsweise 70% der gesamten RNA. Das Verhältnis zwischen poly A+ und poly A mRNA im Myokard änderte sich nicht, weder während einer Hyperfunktion des Herzens noch während des Alterns. Die Halbwertszeit der mRNA was zu Beginn der myokardialen Hyperfunktion auf 2–3 Stunden verkürzt. Bei langdauernder Hyperfunktion (6 Monate) war die Halbwertszeit nicht verschieden von Kontrollen. Die Geschwindigkeit der Poly-A+-mRNA-Synthese war im frühen Stadium der Hyperfunktion gegenüber Kontrollen um 70% erhöht, während sie bei einer chronischen Hypertrophie unter Kontrollwerte fiel. Diese Abnahme in der Geschwindigkeit der mRNA-Transkription im Stadium einer kompensierten Herzhypertrophie kann eine wichtige Rolle bei der Organabnützung und bei vorzeitigen Alterungsprozessen spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brawerman, J.: Alteration in the size of the poly (A) segment in newly synthesized messenger RNA of mouse sarcoma 180 ascites cells. Mol. Biol. Reports1, 7 (1973).

    Google Scholar 

  2. Bray, S. A.: A simple efficient liquid scintillator for counting aqueous solution in a liquid scintillation counter. Anal. Biochem.7, 279 (1960).

    Google Scholar 

  3. Buckingham, M., D. Caput, A. Cohen et al.: The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture. Proc. Nat. Acad. Sci. USA,71, 1466 (1974).

    PubMed  Google Scholar 

  4. Buckingham, M. E., A. Cohen, F. Gros: Cytoplasmic distribution of pulse labelled poly (A) containing RNA particularly 26 S RNA during myoblast growth and differentiation. J. Mol. Biol.103, 611 (1976).

    PubMed  Google Scholar 

  5. Brzubyla, A., R. C. Stronman: Myosin heavy chain messenger RNA from myogenic cell cultures. Proc. Nat. Acad. Sci. USA71, 662 (1974).

    PubMed  Google Scholar 

  6. Chernovskaja, T. V., M. I. Lerman: Metabolic heterogeneity of nuclear poly (a) containing RNA in mouse. Nucl. Acid. Res.4, 3473 (1977).

    Google Scholar 

  7. Florini, J., F. Dankberg: Changes in ribonucleic acid and protein synthesis during induced cardiac hypertrophy. Biochemistry10, 530 (1971).

    Article  PubMed  Google Scholar 

  8. Gutilletta, A., M. Rudnik, R. Zak: Muscle and non-muscle cell RNA-polymerasa activity during the development of myocardial hypertrophy. J. Mol. Cell. Cardiol.10, 677 (1978).

    PubMed  Google Scholar 

  9. Hajen, J., M. Buresova: The synthesis of RNA species in the skeletal muscle of the mouse. Physiol. bohemosl.22, 623 (1973).

    Google Scholar 

  10. Heywood, S. M., R. M. Dowben, A. Rich: Study of muscle polyribosomes and the coprecipitation of polyribosomes with myosin. Biochemistry7, 3289 (1968).

    Article  PubMed  Google Scholar 

  11. Javich, M. P., M. I. Lerman, F. Z. Meerson: Metabolic stability of protein synthesizing system of myocardium in conditions of compensatory hyperfunction of heart under blockage of RNA synthesis by actinomycin D (in Russian). Voprosy Meditsinskoi khimii (Moscow)22, 307 (1976).

    Google Scholar 

  12. Javich, M. P., M. I. Lerman, F. Z. Meerson: In vitro incorporation of labeled amino-acid into heart muscle ribosomes at early and late stages of compensatory heart hyperfunction (in Russian). Biochimia (Moscow)41, 2110 (1976).

    Google Scholar 

  13. Kaufman, S., K. W. Gross: Quantitation and size determination of poly (A) by hybridization to (H+) poly (dt). Biochim. Biophys. Acta353, 133 (1974).

    PubMed  Google Scholar 

  14. Lubimova, E. V., T. V. Chernovskaja, M. I. Lerman: Three mRNA populations chiffering in turnover and processing in mouse liver. Molecular Biology Reports2, 269 (1975).

    PubMed  Google Scholar 

  15. Meerson, F. L.: The myocardium in hyperfunction, hypertrophy and heart failure. Circulat. Res.25 (Suppl. 2) I-163 (1969).

    Google Scholar 

  16. Meerson, F. L., M. Javich, M. I. Lerman: Decrease in the rate of RNA and protein synthesis and degradation in the myocardium under long-term compensatory hyperfunction and on aging. J. Mol. Cell. Cardiol.10, 145 (1978).

    PubMed  Google Scholar 

  17. Mondal, H., A. Sutten, V. Chen, S. Sarkar: Highly purified mRNA for myosin heavy chain size and polyadenylic acid content. Biochem. biophys. Res. Commun.56, 918 (1974).

    Google Scholar 

  18. Morris, G., E. Buzach, S. M. Heywood et al.: Myosin messenger RNA. Studies on its purification properties and translation during myogenesis in culture. Cold Spring Harbor Symposia37, 535 (1973).

    Google Scholar 

  19. Nair, K. S., A. T. Sutilleta, R. Zak, F. Koide, M. Rabinowitz: Biochemical correlations of cardiac hypertrophy. Circulat. Res.,23, 451 (1968).

    PubMed  Google Scholar 

  20. Nemer, M., L. Dubroff: Properties of sea urchin embryo messenger RNA containing and lacking poly A. Cell6, 171 (1975).

    PubMed  Google Scholar 

  21. Ouellette, A., A. Kumar, R. Malt: Physical aspects and cytoplasmic distribution of messenger RNA in mouse kidney. Biochim. Biophys. Acta425, 384 (1976).

    PubMed  Google Scholar 

  22. Ouellette, A., L. Sharon, R. Reed, A. Malt: Short-lived methylated messenger RNA in mouse kidney. Proc. Nat. Acad. Sci. USA73, 2609 (1976).

    PubMed  Google Scholar 

  23. Paterson, B. M., B. Roberts, D. Yaffe: Determination of actin messenger RNA in cultures of differentiating embryonic chick skeletal muscle. Proc. Nat. Acad. Sci. USA71, 4467 (1974).

    PubMed  Google Scholar 

  24. Schreiber, S., M. Oratz, M. Rothschild, C. Evans, E. Silver: Factors initiating increased protein synthesis in overloaded mammalian hearts. Clin. Res.16, 248 (1968).

    Google Scholar 

  25. Sheldon, R., C. Jurale, J. Kates: Detection of polyadenylic acid sequenced in viral and eukaryotic RNA. Proc. Nat. Acad. Sci. USA69, 417 (1971).

    Google Scholar 

  26. Spirin, A. S.: Spectrophotometric determination of nucleic acids (in Russian). Biochimia (Moscow)25, 656 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 figures and 2 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meerson, F.Z., Javich, M.P. & Podobed, O.V. Metabolism of poly (A)-containing mRNA in myocardium under normal physiological conditions and compensatory cardiac hyperfunction. Basic Res Cardiol 76, 124–135 (1981). https://doi.org/10.1007/BF01907951

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907951

Key words

Navigation