Skip to main content
Log in

Myocardial elasticity and left ventricular distensibility as related to oxygen deficiency and right ventricular filling. Analysis in a rat heart model

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Hypoxia-induced changes in diastolic left ventricular (LV) pressure volume (P-V) relationships and myocardial elasticity as well as the extent to which diastolic right ventricular (RV) interactions are involved under hypoxia were analysed in male open-chest Wistar rats under isovolumetric conditions. Wall stress σ and differential elastic modulus E were calculated for the midwall region, assuming a spherical model.

LV end-diastolic P-V relationship shifted significantly to the left only 2 min after the start of pure N2 ventilation. The slope of the E-σ curve did not change, corresponding to the “contracture type” of decreased myocardial distensibility. Identical changes occurred when filling of the RV was increased under O2 ventilation. Hypoxia, under emptied RV, led within 8 min to substantially lower, nonsignificant steepening of the end-disastolic P-V relationships. There was a significant change in the diastolic P-V curve along with a parallel increase in stiffness constant b, 45 min after N2 ventilation and under emptied RV. However, as a result of failure of cardiac function, ischemia was by now prevailing.

These findings led to the following conclusions: In the early phase of hypoxia, i. e. within the first 20 min (in the model used in the present study) no substantial rigor occurs but the increase of LV end-diastolic P-V values is essentially due to augmented RV filling, even under opened chest and removed pericardium. The geometrical influence of the RV mimics the “contracture type” of decreased myocardial distensibility and cannot be recognized on the basis of the E-σ relationship. Without knowledge of RV pressure it is not feasible to distinguish early “contracture” or rigor from extraventricular influences, caused by changes in the filling of the neighbouring ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alderman EL, Glantz SA (1976) Acute hemodynamic interventions shift the diastolic pressure volume curve in man. Circulation 54:662–671

    PubMed  Google Scholar 

  2. Barry WH, Brooker JZ, Alderman EL, Harrison DC (1974) Changes in diastolic stiffness and tone of the left ventricle during angina pectoris. Circulation 49:255–263

    PubMed  Google Scholar 

  3. Bemis CE, Serur JR, Borkenhagen D, Sonnenblick EH, Urschel CW (1974) Influence of right ventricular filling pressure on left ventricular pressure and dimension. Circ Res 34:498–504

    PubMed  Google Scholar 

  4. Berglund E, Sarnoff SJ, Isaacs JP (1955) Ventricular function: Role of the pericardium in regulation of cardiovascular hemodynamics. Circ Res 3:133–139

    PubMed  Google Scholar 

  5. Bergofsky EH, Holtzman S (1967) A study of the mechanisms involved in the pulmonary arterial pressor response to hypoxia. Circ Res 20:506–519

    PubMed  Google Scholar 

  6. Bing OHL, Brooks WW, Messer JV (1973) Heart muscle viability following hypoxia: protective effect of acidosis. Science 180:1297

    PubMed  Google Scholar 

  7. Bing OHL, Fishbein MC (1979) Mechanical and structural correlates of contracture induced by metabolic blockade in cardiac muscle from the rat. Circ Res 45:298–308

    PubMed  Google Scholar 

  8. Cobbe SM, Poole-Wilson PA (1980) Tissue acidosis in myocardial hypoxia. J Mol Cell Cardiol 12:761–770

    PubMed  Google Scholar 

  9. Cobbe SM, Poole-Wilson PA (1975) Observations on ischemic contracture of the heart (“stone heart”). Cardiovasc Res 9:246–248

    PubMed  Google Scholar 

  10. Diamond G, Forrester JS (1972) Effect of coronary artery disease and acute myocardial infarction on left ventricular compliance in man. Circulation 45:11–49

    PubMed  Google Scholar 

  11. Elzinga G, von Grondelle R, Westerhof N, van den Bos GC (1974) Ventricular interference. Am J Physiol 226:941–947

    PubMed  Google Scholar 

  12. Von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12:301

    Google Scholar 

  13. Feneiss H (1943) Das Gefüge des Herzmuskels bei Systole und Diastole. Morph Jahrb 89:371–406. Akad Verl Ges Beckert und Erler, Leipzig

    Google Scholar 

  14. Frank O (1920) Die Elastizität der Blutgefäße. Z f Biol 71:255–272

    Google Scholar 

  15. Glantz SA, Parmley WW (1978) Factors which affect the diastolic pressure-volume curve. Circul Res 42:171–180

    Google Scholar 

  16. Greene HL, Weisfeldt ML (1977) Determinants of hypoxic and posthypoxic myocardial contracture. Am J Physiol 232:H526–533

    PubMed  Google Scholar 

  17. Henry PD, Sobel BE, Braunwald E (1974) Protection of hypoxic guinea-pig hearts with glucose and insulin. Am J Physiol 226 (2):309–313

    PubMed  Google Scholar 

  18. Hepp A, Hansis M, Gülch R, Jacob R (1974) Left ventricular isovolumetric pressure-volume relations, “diastolic tone” and contractility in the rat heart after physical training. Basic Res Cardiol 69:516–532

    PubMed  Google Scholar 

  19. Holubarsch Ch, Jacob R (1978) Elastizitätsberechnungen am Modell des isolierten Ratten-und Katzenmyokards unter Kontrakturbedingungen an Hand von Ruhe-Dehnungskurven. Basic Res Cardiol 73:442

    PubMed  Google Scholar 

  20. Holubarsch Ch, Jacob R (1981) Diastolic tension of rat cardiac muscle during deficiency of oxygen and glucose. Stress-strain relationships and reversibility. Basic Res Cardiol 76:690–703

    PubMed  Google Scholar 

  21. Jacob R, Holubarsch Ch, Moser H, Brenner B (1980) Quantification and interpretation of changes in myocardial elasticity under hypoxia. In: Heiss HW (ed) Advances in Clinical Cardiology 1:211–228. Gerhard Witzstrock, New York

    Google Scholar 

  22. Kissling G, Gack K (1970) Quantitative invetigations about the amount of an elastic hysteresis of canine left ventricle. Pflügers Arch 316:R13

    Google Scholar 

  23. Kissling G, Gassenmaier T, Wendt-Gallitelli MF, Jacob R (1977) Pressure-volume relations, elastic modulus and contractile behaviour of the hypertrophied left ventricle of rats with Goldblatt II hypertension. Pflügers Arch 369:213–221

    Google Scholar 

  24. Köhler MJ (1983) Die Ruhe-Dehnungskurve des linken Ventrikels beim Rattenherzen unter Sauerstoffmangelbedingungen. Thesis, University of Tübingen

  25. Laks MM, Garner D, Swan HJC (1967) Volumes and compliances measured simultaneously in the right and left ventricles of the dog. Circ Res 20:565–569

    PubMed  Google Scholar 

  26. Lavallee M (1964) Intracellular pH of rat atrial muscle fibers measured by glass micropipette electrodes. Circ Res 15:185–193

    Google Scholar 

  27. Lorrell BH, Palacios I, Daggett WM, Fowler BN, Newell JB (1981) Right ventricular distension and left ventricular compliance. Am J Physiol 240:H87–98

    PubMed  Google Scholar 

  28. Mall FP (1911) On the musculatur architecture of the ventricles of the human heart. Am J Anatomy 11:211–266

    Google Scholar 

  29. McLaurin LP, Rolett EL, Grossman W (1973) Impaired left ventricular relaxation during pacinginduced angina. Am J Cardiol 32:751–757

    PubMed  Google Scholar 

  30. Mirsky I, Parmley WW (1973) Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ Res 33:233–243

    PubMed  Google Scholar 

  31. Morgenstern C, Höljes U, Arnold G, Lochner W (1973) The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle. Pflügers Arch 340:101–111

    Google Scholar 

  32. Nayler WG, Poole-Wilson PA, Williams A (1979) Hypoxia and calcium. J Mol Cell Cardiol 11:683–706

    PubMed  Google Scholar 

  33. Neely JR, Whitmer JT, Rovetto MJ (1975) Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts. Circ Res 37:733–741

    PubMed  Google Scholar 

  34. Pogatsa G, Dubecz E, Gabor G (1976) The role of myocardial edema in the left ventricular diastolic stiffness. Basic Res Cardiol 71:263–269

    PubMed  Google Scholar 

  35. Robb JS, Robb RC (1942) The normal heart. Anatomy and physiology of the structural units. Am Heart J 23:455–467

    Google Scholar 

  36. Ross J Jr (1979) Acute displacement of the diastolic pressure-volume curve of the left ventricle: Role of the pericardium and the right ventricle. Circulation 59:32–37

    PubMed  Google Scholar 

  37. Rovetto MJ, Whitmer JT, Neely JR (1973) Comparison of the effects of anoxia and whole heart ischemia on carbohydrate utilization in isolated working rat hearts. Circ Res 32:699

    PubMed  Google Scholar 

  38. Scheuer JS, Stezoski W (1970) Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Circ Res 27:835–849

    PubMed  Google Scholar 

  39. Schwaigerer S (1955) Umdrehungsschalen. In: Hütte. Des Ingenieurs Taschenbuch, Vol 1:951, Berlin

  40. Seabra-Gomes R, Ganote CE, Nayler WG (1975) Species variation in anoxia-induced damage of heart muscle. J Mol Cell Cardiol 7:929–937

    PubMed  Google Scholar 

  41. Serizawa T, Carabello BA, Grossman W (1980) Effect of pacing-induced ischemia on left ventricular diastolic pressure volume relations in dogs with coronary stenosis. Circ Res 46:430–439

    PubMed  Google Scholar 

  42. Streeter DDJr, Bassett DL (1966) An engineering analysis of myocardial fiber orientation in pig's left ventricle in systole. Anat Rec 155:503–512

    Google Scholar 

  43. Taw RL Jr, Lawrence SC, Griffith LFC, Conti CR, Ducci H, Weisfeldt M (1976) Impaired isovolumic relaxation during pacing-induced ischemia in man. Circulation 54:(Suppl II)11–16

    Google Scholar 

  44. Taylor RR, Covell JW, Sonnenblick EH, Ross JJr (1967) Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol 213:711–718

    PubMed  Google Scholar 

  45. Ullrich KJ, Riecker G, Kramer K (1954) Das Druckvolumendiagramm des Warmblüterherzens. Pflügers Arch 259:481–498

    Google Scholar 

  46. Vogt M (1982) Passiv-elastische Eigenschaften des Myokards unter besonderer Berücksichtigung verschiedener Verfahren des Calciumentzuges. Thesis, University of Tübingen

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, M., Jacob, R. Myocardial elasticity and left ventricular distensibility as related to oxygen deficiency and right ventricular filling. Analysis in a rat heart model. Basic Res Cardiol 80, 537–547 (1985). https://doi.org/10.1007/BF01907917

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907917

Key words

Navigation