Skip to main content
Log in

Effects of isoprenaline on functional capillary density in the subendocardial and subepicardial layer of the rat myocardium

Wirkungen von Isoprenalin auf die funktionelle Kapillardichte in der subendokardialen und subepikardialen Schicht des Herzens der Ratte

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The functional capillary density in subepicardial and subendocardial layers of rat heart was measured during rest and during isoprenaline-induced (5.0 μg×kg−1×min−1, i.v. over 3 minutes) cardiac stimulation.

For determination of the number of perfused capillaries, a fluorescent dye (thioflavine S) was infused into the left atrium; 1, 3, 5 and 10 sec, respectively, after starting dye application, hearts were excised and rapidly cooled down to −50°C. In histological sections capillaries which had been perfused during the dye infusion could be identified and counted.

An increase in the number of stained vessels was found in both layers of the myocardium when the time of dye exposure was prolonged. Under these conditions the rise was much smaller in isoprenaline-treated animals, this effect being most marked in the subendocardial layer (3560±199 cap./mm2, control group; 2190±30 cap./mm2, isoprenaline-treated group; dye exposure 10 sec).

Isoprenaline — at the dose used — induced an increase in total blood flow (3.7±0.6 ml×min−1×g−1, control group; 6.8±0.7 ml×min−1×g−1, isoprenaline-treated group), however, with a relatively less pronounced increase in the subendocardial blood flow (subendocardial/subepicardial flows: 1.08±0.13, control group; 0.66±0.01, isoprenaline-treated group).

These results favour the view that isoprenaline-induced relative reduction in the subendocardial blood flow is due to disturbance of perfusion pressure and extravascular compression rather than to exhaustion of the myocardial capillary reserve.

Zusammenfassung

In Versuchen an der Ratte wurde die funktionelle Kapillardichte in subendokardialen und subepikardialen Anteilen des Herzens unter Ruhebedingungen und unter Stimulation durch Isoprenalin (5,0 μg/kg×min i.v., 3 min) bestimmt. Zur Erfassung der Zahl der perfundierten Kapillaren wurde ein Fluoreszenzfarbstoff (Thioflavin S) in den linken Vorhof infundiert und 1, 3, 5 bzw. 10 s nach Beginn der Infusion das herz exzidiert und schnell kältefixiert. In histologischen Schnitten ließen sich dann diejenigen Kapillaren erkennen und auszählen, die während der Farbstoffinfusion perfundiert worden waren.

In beiden Schichten des Myokards wurde mit Verlängerung der Farbstoffexpositionszeit eine Zunahme der Zahl markierter Gefäße beobachtet. Dieser Effekt war in der Isoprenalin-behandelten Gruppe wesentlich geringer und war am deutlichsten in der subendokardialen Schicht ausgeprägt (3560±199 Kap./mm2 Kontrolle, 2190±30 Kap./mm2 unter Isoprenalin-Behandlung, jeweils nach 10 s Farbstoffexposition).

Bei der hier verwandten Isoprenalin-Dosis kam es zum Anstieg der Gesamtkoronardurchblutung (3,7±0,6 Kontrolle, 6,8±0,7 Isoprenalin-Behandlung, ml/min×g). Gleichzeitig fand sich eine Reduzierung des relativen Anteils der Subendokard-durchblutung (Verhältnis von subendokardialem zu subepikardialem Fluß 1,08±0,13 unter Kontrollbedingungen, 0,66±0,01 unter Isoprenalin-Behandlung).

Die Ergebnisse sprechen dafür, daß die unter Isoprenalin beobachteten Verminderungen der relativen Subendokarddurchblutung nicht auf eine Erschöpfung der myokardialen Kapillarreserve zurückgehen, sondern vermutlich überwiegend durch die Erniedrigung des Perfusionsdruckes bei gleichzeitig erhöhter extravaskulärer Kompression bedingt sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moir, T. W.: Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circulat. Res.30, 621 (1972).

    PubMed  Google Scholar 

  2. Guy, C., R. S. Eliot: The pathopyysiologic vulnerability of the subendocardium of the left ventricle. Adv. Cardiol.9, 42 (1973).

    PubMed  Google Scholar 

  3. Bell, J. R., A. C. Fox: Pathogenesis of subendocardial ischemia. Amer. J. med. Sci.268, 3 (1974).

    PubMed  Google Scholar 

  4. Kloner, R. A., C. E. Ganote, K. A. Reimer, R. B. Jennings: Distribution of coronary arterial flow in acute myocardial ischemia. Arch. Pathol.99, 86 (1975).

    PubMed  Google Scholar 

  5. Flameng, W., B. Wüsten, W. Schaper. On the distribution of myocardial flow. Part II: Effects of arterial stenosis and vasodilation. Basic Res. Cardiol.69, 435 (1974).

    PubMed  Google Scholar 

  6. Buckberg, G. D., D. E. Fixler, J. P. Archie, J. I. E. Hoffman: Experimental subendocardial ischemia in dogs with normal coronary arteries. Circulat. Res.30, 67 (1972).

    PubMed  Google Scholar 

  7. Buckberg, G. D., G. Ross: Effects of isoprenaline on coronary blood flow: its distribution and myocardial performance. Cardiovasc. Res.7, 429 (1973).

    PubMed  Google Scholar 

  8. Winsor, T., B. Mills, M. M. Winbury B. B. Howe, H. J. Berger: Intramyocardial diversion of coronary blood flow: Effects of isoprenaline-induced subendocardial ischemia. Microvasc. Res.9, 261 (1975).

    PubMed  Google Scholar 

  9. Rona, G., C. J. Chappel, T. Balazs, R. Gandry: An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch. Pathol.67, 443 (1959).

    Google Scholar 

  10. Ferrans, V. J., R. G. Hibbs, W. C. Black, B. S. Weilbaecher: Isoprenaline induced myocardial necrosis: A histochemical and electron microscopic study. Amer. Heart J.68, 71 (1964).

    PubMed  Google Scholar 

  11. Hiott, D. W.: Structural changes in heart muscle after hemorrhagic shock and isoproterenol infusions. Arch. int. Pharmacodyn.180, 206 (1969).

    PubMed  Google Scholar 

  12. Faltová, E., M. Mráz, L. Kronrád, L., Protivová, J. Šediuý: Studies in isoprenaline-induced myocardial lesions. 1. Quantitative evaluation by mercurascan uptake. Basic Res. Cardiol.72, 454 (1977).

    PubMed  Google Scholar 

  13. Wüsten, B., D. D. Buss, H. Deist, W. Schaper: Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res. Cardiol.72, 636 (1977).

    PubMed  Google Scholar 

  14. Vetterlein, F., G. Schmidt: Functional capillary density in the skeletal muscle of the rat identified by fluorescent macromolecules and effects of vasoactive drugs. Naunyn-Schmiedeberg's Arch. Pharmacol.297, R31 (1977).

    Google Scholar 

  15. Kreutz, F., H. J. Appell, C. Dührssen, P. Gaehtgens: Functional capillary density in normoxia and hypoxia in rat myocardium. Pflügers Arch.377, R7 (1978).

    Google Scholar 

  16. Vetterlein, F., H. J. Appell, F. Kreutz, P. Gaehtgens: Determination of capillary density in rat myocardium by fluorescence microscopy. Microvasc. Res. (in press).

  17. Vetterlein, F., R. Halfter, G. Schmidt: Regional blood flow determination in rats by the microsphere method during i.v.-infusion of vasodilating agents. Arzneimittelforschg.29, 747 (1979).

    Google Scholar 

  18. Rakušan, K.: Quantitative morphology of capillaries of the heart. Number of capillaries in animal and human hearts under normal and pathological conditions. In: Functional Morphology of the Heart; Methods and Achievements in Experimental Pathology, Vol. 5, pp. 272–286, eds.E. Bajusz andG. Jasmin (Basel 1971).

  19. Gregg, D. E., L. C. Fisher: Blood supply to the heart. In: Handbook of Physiology, Sect. 2, Circulation, Vol. II, ed.W. F. Hamilton andP. Dow, pp. 1517–1584, Amer. Physiological Society (Washington D.C. 1963).

    Google Scholar 

  20. Hershgold, E. J., H. Sheldon, M. D. Steiner, L. A. Sapirstein: Distribution of myocardial blood flow in the rat. Circulat. Res.7, 551 (1959).

    PubMed  Google Scholar 

  21. Takács, L., K. Kállay, J. H. Skolnik: Effect of tourniquet shock and acute hemorrhage on the circulation of various organs in the rat. Circulat. Res.10, 753 (1962).

    PubMed  Google Scholar 

  22. Sasaki, Y., H. N. Wagner: Measurement of the distribution of cardiac output in unanesthetized rats. J. appl. Physiol.30, 879 (1971).

    PubMed  Google Scholar 

  23. Rakušan, K., J. Blahitka: Cardiac output distribution in rats measured by injection of radioactive microspheres via cardiac puncture. Canad. J. Physiol. Pharmacol.52, 230 (1974).

    Google Scholar 

  24. Malik, A. B., J. E. Kaplan, T. M. Saba: Reference sample method for cardiac output and regional blood flow determinations in the rat. J. appl. Physiol.40, 472 (1976).

    PubMed  Google Scholar 

  25. Nishiyama, K., A. Nishiyama, E. D. Frohlich: Regional blood flow in normotensive and spontaneously hypertensive rats. Amer. J. Physiol.230, 691 (1976).

    PubMed  Google Scholar 

  26. Neely, J. R., J. T. Witmer, M. J. Rovetto: Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts. Circulat. Res.37, 733 (1975).

    PubMed  Google Scholar 

  27. Nishiki, K., M. Erecińska, D. F. Wilson: Energy relationship between cytosolic metabolism and mitochondrial respiration in rat heart. Amer. J. Physiol.234, C73 (1978).

    PubMed  Google Scholar 

  28. Schlegel, J. U.: Demonstration of blood vessels and lymphatics with a fluorescent dye in ultraviolet light. Anat. Record105, 433 (1949).

    Google Scholar 

  29. Schlegel, J. U., J. B. Moses: A method for visualization of kidney blood vessels applied to studies of the crush syndrome. Proc. Soc. Exp. Biol. Med.74, 832 (1950).

    PubMed  Google Scholar 

  30. Hellberg, K., H. Wayland, A. L. Rickart, R. J. Bing: Studies on the coronary microcirculation by direct visualization. Amer. J. Cardiol.29, 593 (1972).

    PubMed  Google Scholar 

  31. Tillmanns, H., R. J. Bing, M. Steinhausen: Tierexperimentelle Untersuchungen über die Mikrozirkulation der Ventrikelmuskulatur. Verh. Dt. Ges. Kreislaufforschg.42, 380 (1976).

    Google Scholar 

  32. Clark, D. R., P. Smith: Capillary density and muscle fibre size in the hearts of rats subjected to simulated high altitude. Cardiovasc. Res.12, 578 (1978).

    PubMed  Google Scholar 

  33. Fortuin, N. J., S. Kaihara, L. C. Becker, B. Pitt: Regional myocardial blood flow in the dog studied with radioactive microspheres. Cardiovasc. Res.5, 331 (1971).

    PubMed  Google Scholar 

  34. Collins, P., C. G. Billings: Isoprenaline-induced changes in regional myocardial perfusion in the pathogenesis of myocardial necrosis. Brit. J. exp. Path.57, 637 (1976).

    PubMed  Google Scholar 

  35. Kreuzer, H., W. Schoeppe: Das Verhalten des Druckes in der Herzwand. Pflügers Arch.278, 181 (1963).

    Article  Google Scholar 

  36. Vetterlein, F., G. Schmidt: Effects of vasodilating agents on the microcirculation in marginal parts of the skeletal muscle. Arch. int. Pharmacodyn. Ther.213, 4 (1975).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 figures and 2 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetterlein, F., Schmidt, G. Effects of isoprenaline on functional capillary density in the subendocardial and subepicardial layer of the rat myocardium. Basic Res Cardiol 75, 526–536 (1980). https://doi.org/10.1007/BF01907834

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907834

Keywords

Navigation