Basic Research in Cardiology

, Volume 74, Issue 2, pp 177–202 | Cite as

Indirekter Nachweis einer dehnungsinduzierten Ca++-Freisetzung aus dem sarkoplasmatischen Retikulum glyzerinisierter Skelett- und Herzmuskelpräparate

  • B. Brenner
Original Contributions

Zusammenfassung

Die Existenz funktionsfähiger Vesikel des sarkoplasmatischen Retikulums in glyzerinisierten Präparaten des Kaninchenpsoas und des Katzenmyokards wird demonstriert aufgrund des Aktivierungsverlaufs (isometrische Spannungsentwicklung und Verkürzungsverhalten) des kontraktilen Systems als Indikator für die „sarkoplasmatische” Ca++-Konzentration. Weiterhin wurden die Bedingungen für die Ca++-Freisetzung und Speicherung in den SR-Vesikeln analysiert.
  1. (1)

    Wie die elektronenmikroskopischen Untersuchungen zeigen, enthalten glyzerinisierte Skelett- und Herzmuskelpräparate SR-Vesikel (Ø 0,1–0,2 μ). Die vonJulian (1971) beschriebene Detergenzienbehandlung verursacht weder eine morphologische Veränderung des kontraktilen Systems noch dieser SR-Vesikel.

     
  2. (2)

    Die verzögerte Spannungsentwicklung glyzerinisierter Präparate nach einer Erhöhung der Ca++-Konzentration im Inkubationsmedium kann zumindest teilweise auf eine Ca++-Speicherung in den SR-Vesikeln zurückgeführt werden.

     
  3. (3)

    Die SR-Vesikel glyzerinisierter Präparate sind in der Lage, schon bei Ca++-Konzentrationen, die noch keine aktive Spannungsentwicklung verursachen, Ca++-Ionen zu speichern. Das gespeicherte Kalzium kann über eine passagere Spannungsentwicklung bei Zerstörung der Vesikel durch Detergenzien in hoher Konzentration nachgewiesen werden.

     
  4. (4)

    Auch bei glyzerinisierten Präparaten kann eine Ca++-induzierte Ca++-Freisetzung demonstriert werden. Nach Ca++-Beladung der Präparate kann dieser Mechanismus bei Skelett- und Herzmuskelpräparaten durch Ca++-Konzentrationen ≥10−7,48 Mol/l ausgelöst werden.

     
  5. (5)

    Eine schnelle Dehnung Ca++-beladener, relaxierter Präparate verursacht bei Einzelfasern und Faserbündeln des Kaninchenpsoas umschriebene Verkürzungen der Myofibrillen. Bei den Faserbündeln kann, wie bei Papillarmuskeln des Katzenmyokards, gleichzeitig eine passagere Spannungsentwicklung beobachtet werden. Es wird der Nachweis erbracht, daß die umschriebenen Verkürzungen und die passagere Spannungsentwicklung auf einer dehnungsinduzierten Ca++-Freisetzung aus den SR-Vesikeln beruhen.

     
  6. (6)

    Längenkontrollierte Dehnungs- und Entdehnungssprünge verursachen bei teilaktivierten Präparaten sinusförmige Spannungsschwankungen, die der bekannten verzögerten aktiven Spannungsentwicklung überlagert sind. Im vollaktivierten Zustand sind hingegen solche Spannungsschwankungen nicht nachweisbar. Spannungskontrollierte Dehnungs- und Entdehnungsexperimente verursachen ähnliche „Schwingungen” der Präparatenlänge, die jedoch ausgeprägter sind als die Spannungsschwankungen. Auch für diese „Schwingungen” kann gezeigt werden, daß sie auf dehnungs- und entdehnungsinduzierten Änderungen der Ca++-Fluxe zwischen SR-Vesikeln und dem Sarkoplasma beruhen.

     
  7. (7)

    Diese dehnungsinduzierte Ca++-Freisetzung aus dem SR dürfte in vivo mitverantwortlich sein für den mehrphasigen Verlauf der aktiven und passiven isometrischen Spannungsentwicklung nach einer akuten Längenänderung sowie für die Vordehnungsabhängigkeit des Mechanogramms, die nicht allein aus dem Überlappungsgrad der kontraktilen Filamente erklärbar ist. Außerdem wäre auf dieser Grundlage eine Aufrechterhaltung der Sarkomerensymmetrie und eine wirksame Gegenregulation bei Abweichungen von der mittleren Sarkomerenlänge innerhalb eines Präparates möglich.

     

An indirect proof of stretch-induced Ca++ release from the sarcoplasmic reticulum in glycerinated skeletal and heart muscle preparations

Summary

The existence of still functioning vesicles of the sarcoplasmic reticulum (SR) in glycerinated rabbit psoas muscle fibers and cat myocardium is demonstrated by the use of activation (force development and shortening) of the contractile system as an indicator for “sarcoplasmic”, free Ca++ concentration and by electron microscopic studies. Furthermore, the conditions for Ca++ release and uptake by the SR vesicles were analyzed.
  1. (1)

    As indicated by electron microscopic studies, glycerinated skeletal and heart muscle preparations contain SR vesicles (diameter 0.1–0.2 μ). Detergent treatment as used byJulian (1971) causes neither morphological change in the contractile system nor in the SR vesicles.

     
  2. (2)

    The delay in tension development of glycerinated preparations after an increase in free Ca++ concentration of the bathing medium is demonstrated to be caused at least partly by Ca++ uptake in these SR vesicles.

     
  3. (3)

    The SR vesicles of glycerinated preparations are able to accumulate Ca++ just at concentrations which are subthreshold for tension development. The accumulated Ca++ can be detected by a transient force development resulting from abolishment of the Ca++ storage capacity of the SR vesicles caused by high concentrations of detergents.

     
  4. (4)

    Ca++-induced Ca++ release is also demonstrated in glycerinated preparations. After Ca++ loading this release mechanism occurs at Ca++ concentrations in the bathing medium starting at about 10−7,48 Mol/l both in skeletal and heart muscle preparations.

     
  5. (5)

    Quick stretch of Ca++-loaded, relaxed preparations causes local contractions of the myofibrils in both single fibers and fiber bundles of glycerinated rabbit psoas muscle. Skeletal fiber bundles and cat myocardium show a transient tension development parallel to these local contractions. These effects are demonstrated to be due to a stretch-induced Ca++ release from the SR vesicles.

     
  6. (6)

    Length-controlled quick stretches or quick releases of partly activated preparations cause sinusoidal tension oscillations superimposed on the well-known, delayed active tension development. In contrast, fully activated preparations do not show superimposed oscillations in tension. Force-controlled quick stretches or quick releases induce equivalent oscillations in length which are more distinct than the tension oscillations, however. These oscillations are also demonstrated to be due to stretch or release-induced changes in the Ca++ fluxes between SR vesicles and the “sarcoplasm”.

     
  7. (7)

    This stretch induced release of Ca++ from the SR could be one reason for the multiple-phase course of active and passive isometric tension development in vivo following quick changes in length, and could also partly explain the prestretch dependence of tension development which cannot be explained from the degree of overlapping of the contractile filaments alone. In addition, this mechanism permits a maintenance of sarcomere symmetry and provides an effective compensating mechanism for deviations from the average sarcomere length within a whole muscle preparation.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abbott, R. H.: The effects of fibre length and calcium ion concentration on the dynamic response of glycerol extracted insect fibrillar muscle. J. Physiol. (Lond.)231, 195–208 (1973).Google Scholar
  2. 2.
    Alexander, R. S.: Immediate effects of stretch on muscle contractility. Amer. J. Physiol.196, 807–810 (1959).PubMedGoogle Scholar
  3. 3.
    Blinks, J. R., F. G. Prendergast, D. G. Allen: Photoproteins as biological indicators. Pharmacol. Rev.28, 1–93 (1976).PubMedGoogle Scholar
  4. 4.
    Carvalho, A. P.: Binding and release of cations by sarcoplasmic reticulum before and after removal of lipid. Eur. J. Biochem.27, 491–502 (1972).PubMedGoogle Scholar
  5. 5.
    Costantin, L. L., C. Franzani-Armstrong, R. J. Podolsky: Localization of calcium-accumulating structure in striated muscle fibers. Science147, 158–160 (1965).PubMedGoogle Scholar
  6. 6.
    Doi, Y.: Studies on muscular contraction: I. The influence of temperature on the mechanical performance of skeletal and heart muscle. J. Physiol. (Lond.)54, 218–226 (1920).Google Scholar
  7. 7.
    Doi, Y.: Studies on muscular contraction: II. The relation between the maximal work and the tension developed in a muscle twitch, and the effects of temperature and extension. J. Physiol. (Lond.)54, 335–341 (1921).Google Scholar
  8. 8.
    Edman, K. A. P.: The relation between sarcomere length and active tension in isolated semitendinosus fibres of the frog. J. Physiol. (Lond.)183, 407–417 (1966).Google Scholar
  9. 9.
    Endo, M.: Stretch-induced increase in activation of skinned muscle fibres by calcium. Nature237 NB, 211–213 (1972).PubMedGoogle Scholar
  10. 10.
    Endo, M.: Length dependence of activation of skinned muscle fibres by calcium. Cold Spring Harbor Symp. Quant. Biol.37, 505–510 (1973).Google Scholar
  11. 11.
    Endo, M.: Calcium release from the sarcoplasmic reticulum. Physiol. Reviews57, 71–108 (1977).Google Scholar
  12. 12.
    Endo, M., M. Tanaka, S. Ebashi: Release of calcium from the sarcoplasmic reticulum in skinned fibres of the frog. Proc. Internat. Congr. Physiol. Sci. 24th, Vol. 7, p. 126 (1968).Google Scholar
  13. 13.
    Evans, C. L., A. V. Hill: The relation of length to tension development and heat production on contraction in muscle. J. Physiol. (Lond.)49, 10–16 (1914).Google Scholar
  14. 14.
    Fabiato, A., F. Fabiato: Excitation-contraction coupling of isolated cardiac fibers with disrupted and closed sarcolemmas: Calcium dependent cyclic and tonic contractions. Circ. Res.31, 293–307 (1972).PubMedGoogle Scholar
  15. 15.
    Fabiato, A., F. Fabiato: Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature256, 54–56 (1975).PubMedGoogle Scholar
  16. 16.
    Fabiato, A., F. Fabiato: Dependence of calcium release, tension generation and restoring forces on sarcomere length in skinned muscle cells. Eur. J. Cardiol.4, 13–27 (1976).Google Scholar
  17. 17.
    Fiehn, W., W. Hasselbach: The effect of phospholipase A on the calcium transport and the role of unsaturated fatty acids in ATPase activity of sarcoplasmic vesicles. Eur. J. Biochem.13, 510–518 (1970).PubMedGoogle Scholar
  18. 18.
    Ford, L. E., R. J. Podolsky: Force development and calcium movements in skinned muscle fibers. Fed. Proc.27, 375 (1968).Google Scholar
  19. 19.
    Ford, L. E., R. J. Podolsky: Calcium uptake and force development by skinned muscle fibres in EGTA buffered solutions. J. Physiol. (Lond.)223, 1–19 (1972).Google Scholar
  20. 20.
    Frank, O.: Zur Dynamik des Herzmuskels. Z. Biol.32, 370–437 (1895).Google Scholar
  21. 21.
    Gordon, A. M., A. F. Huxley, F. J. Julian: The length-tension diagram of single vertrebrate striated muscle fibres. J. Physiol. (Lond.)171, 28P-30P (1964).Google Scholar
  22. 22.
    Gordon, A. M., A. F. Huxley, F. J. Julian: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (Lond.)184, 170–192 (1966).Google Scholar
  23. 23.
    Gordon, A. M., E. B. Ridgeway: Length-dependent electro-mechanical coupling in single muscle fibers. J. Gen. Physiol.68, 653–669 (1976).PubMedGoogle Scholar
  24. 24.
    Gülch, R., B. Maisch, E. Wille, R. Jacob: Änderungen des isometrischen Kontraktionsablaufs während der Relaxationsphase nach schneller Dehnung. Pflügers Arch.332, (Suppl.) R 35 (1972).Google Scholar
  25. 25.
    Gülch, R. W., R. Jacob: Length-tension diagram and force-velocity relations of mammalian cardiac muscle under steady-state conditions. Pflügers Arch.355, 331–346 (1975).Google Scholar
  26. 26.
    Gülch, R. W., R. Jacob: The effect of sudden stretches on length-tension and force-velocity relations of mammalian cardiac muscle. Pflügers Arch.357, 335–347 (1975a).Google Scholar
  27. 27.
    Hasselbach, W.: Relaxation and the sarcotubular calcium pump Fed. Proc.23, 909–912 (1964).PubMedGoogle Scholar
  28. 28.
    Hasselbach, W., M. Makinose: The calcium pump of the relaxing vesicles and the production of a relaxing substance. In: Biochemistry of muscle contraction, ed. byGergely, J. (Boston 1964).Google Scholar
  29. 29.
    Hellam, D. C., R. J. Podolsky: Force measurements in skinned muscle fibres. J. Physiol. (Lond.)200, 807–819 (1969).Google Scholar
  30. 30.
    Hoffman, B. F., A. L. Basset, H. J. Bartelstone: Some mechanical properties of isolated mammalian cardiac muscle. Circ. Res.23, 291–312 (1968).PubMedGoogle Scholar
  31. 31.
    Huxley, A. F., R. E. Taylor: Local activation of striated muscle fibres. J. Physiol. (Lond.)144, 426–441 (1958).Google Scholar
  32. 32.
    Inesi, G., J. J. Goodman, S. Watanabe: Effect of diethyl ether on the adenosine triphosphatase activity and the calcium uptake of fragmented sarcoplasmic reticulum of rabbit skeletal muscle. J. Biol. Chem.242, 4637–4643 (1967).PubMedGoogle Scholar
  33. 33.
    Jewell, B. R.: A reexamination of the influence of muscle length on myocardial performance. Circ. Res.40, 221–230 (1977).PubMedGoogle Scholar
  34. 34.
    Julian, F. J.: The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol. (Lond.)218, 117–145 (1971).Google Scholar
  35. 35.
    Julian, F. J., M. R. Sollins: Sarcomere length-tension relations in living rat papillary muscle. Circ. Res.37, 299–308 (1975).PubMedGoogle Scholar
  36. 36.
    Julian, F. J., M. R. Sollins, R. L. Moss: Absence of a plateau in the length-tension relationship of rabbit papillary muscle when internal shortening is prevented. Nature260, 340–342 (1976).PubMedGoogle Scholar
  37. 37.
    Makinose, M., W. Hasselbach: Die Abhängigkeit der Granawirkung von der Art des Aktomyosinsystems und Gergely's Co-Faktor. Biochim. Biophys. Acta43, 239–248 (1960).PubMedGoogle Scholar
  38. 38.
    Natori, R.: Property and contraction process of isolated myofibrils. Jikei Kai Med. J.I, 119–126 (1954).Google Scholar
  39. 39.
    Parmely, W. W., L. Chuck: Length-dependent changes in myocardial contractile state. Amer. J. Physiol.224, 1195–1199 (1973).PubMedGoogle Scholar
  40. 40.
    Pechere, J. F., J. P. Capony, L. Ryden: The primary structure of the major parvalbumin from hake muscle. Isolation and general properties of the protein. Europ. J. Biochem.23, 421–428 (1971).PubMedGoogle Scholar
  41. 41.
    Podolsky, R. L., L. L. Costantin: Regulation by calcium of the contraction and relaxation of muscle fibers. Fed. Proc.23, 933–939 (1964).PubMedGoogle Scholar
  42. 42.
    Ramsey, R. W., S. F. Street: The isometric length-tension diagram of isolated skeletal muscle fibers of the frog. J. Cell. Comp. Physiol.15, 11–34 (1940).Google Scholar
  43. 43.
    Rüdel, R., S. R. Taylor: Striated muscle fibers: Facilitation of contraction at short muscle lengths by caffein. Science172, 387–388 (1971).PubMedGoogle Scholar
  44. 44.
    Rüegg, J. C., G. J. Steiger, M. Schädler: Mechanical activation of the contractile system in skeletal muscle. Pflügers Arch.319, 139–145 (1970).Google Scholar
  45. 45.
    Schönberg, M., R. J. Podolsky: Length-force relation of calcium activated muscle fibers. Science176, 52–54 (1972).PubMedGoogle Scholar
  46. 46.
    Simmons, R. M., B. R. Jewell: Mechanics and models of muscular contraction. Recent Adv. Physiol.9, 87–147 (1974).Google Scholar
  47. 47.
    Steiger, G. J.: Dehnungsaktivierung isolierter contractiler Strukturen des Herzmuskels. Pflügers Arch.319, R 19 (1970).Google Scholar
  48. 48.
    Szent-Györgyi, A.: Free-energy relations and contractions of actomyosin. Biol. Bull.96, 140–161 (1949).Google Scholar
  49. 49.
    Taylor, S. R., R. Rüdel: Striated muscle fibers: Inactivation of contraction induced by shortening. Science167, 882–884 (1970).PubMedGoogle Scholar
  50. 50.
    Taylor, S. R., R. Rüdel, J. R. Blinks: Calcium transients in amphibian muscle. Fed. Proc.34, 1379–1381 (1975).PubMedGoogle Scholar
  51. 51.
    Walker, S. M.: Potentiation and hysteresis induced by stretch and subsequent release of papillary muscle of the dog. Amer. J. Physiol.198, 519–522 (1960).PubMedGoogle Scholar
  52. 52.
    Walker, S. M., S. G. Thomas: Changes in twitch tension induced by quick stretch and stress relaxation. Amer. J. Physiol.198, 523–527 (1960).PubMedGoogle Scholar
  53. 53.
    Weber, A.: Muskelkontraktion und Modellkontraktion. Biochim. Biophys. Acta7, 214–224 (1951).PubMedGoogle Scholar
  54. 54.
    Weber, A.: Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. I. The effect of accumulated calcium on transport and adenosin triphosphate hydrolysis. J. Gen. Physiol.57, 50–63 (1971).PubMedGoogle Scholar
  55. 55.
    Weber, A.: Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. II. Inhibition of outflux in calcium-free media. J. Gen. Physiol.57, 64–70 (1971a).PubMedGoogle Scholar
  56. 56.
    Winegrad, S.: Autoradiographic studies of intracellular calcium in frog skeletal muscle. J. Gen. Physiol.48, 455–479 (1965).PubMedGoogle Scholar
  57. 57.
    Winegrad, S.: The location of muscle calcium with respect to myofibrils. J. Gen. Physiol.48, 997–1002 (1965a).PubMedGoogle Scholar
  58. 58.
    Winegrad, S.: Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J. Gen. Physiol.51, 65–83 (1968).PubMedGoogle Scholar
  59. 59.
    Winegrad, S.: The intracellular site of calcium activation in frog skeletal muscle. J. Gen. Physiol.55, 77–88 (1970).PubMedGoogle Scholar
  60. 60.
    Winegrad, S.: A chemically skinned cardiac muscle preparation. J. Gen. Physiol.57, 250 (1971).Google Scholar
  61. 61.
    Winegrad, S.: Studies of cardiac muscle with a high permeability to calcium produced by treatment with EDTA. J. Gen. Physiol.58, 71–93 (1971a).PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1979

Authors and Affiliations

  • B. Brenner
    • 1
  1. 1.Physiologisches Institut II der Universität TübingenTübingen

Personalised recommendations