Advertisement

Basic Research in Cardiology

, Volume 74, Issue 5, pp 555–567 | Cite as

Influence of verapamil on cellular integrity and electrolyte concentrations of ischemic myocardial tissue in the cat

  • A. M. Lefer
  • E. W. Polansky
  • C. P. Bianchi
  • S. Narayan
Original Contributions

Summary

Verapamil, at a dose of 1 mg/kg, was given intravenously to anesthetized cats one hour after coronary artery occlusion. Verapamil significantly reduced mean arterial blood pressure, but produced an increase in heart rate, partially offsetting the reduction in myocardial oxygen demand resulting from the reduction in pressure. Verapamil failed to prevent the elevations in the S-T segment of the electrocardiogram observed in cats subjected to myocardial ischemia (MI) and given only the vehicle for verapamil (i.e., 0.9% NaCl). Moreover, verapamil also did not prevent the accumulation of creatine phosphokinase (CPK) activity in the circulating blood after MI. Nevertheless, verapamil significantly prevented the loss in CPK and in amino-nitrogen observed in the ischemic region of the myocardium, indicating some protective effect on myocardial integrity. The major effects of verapamil on electrolyte content of ischemic myocardial tissue were a decrease in sodium and an increase in potassium. However, calcium gain by the heart was not prevented by verapamil. Verapamil, therefore, exerts a partial degree of protection of the ischemic myocardium but exerts some other effects which do not help prevent the spread of ischemic damage in the myocardium.

Keywords

Creatine Verapamil Creatine Phosphokinase Coronary Artery Occlusion Ischemic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Der Einfluß von Verapamil auf zelluläre Integrität und Elektrolytkonzentration des ischämischen Myokardgewebes der Katze

Zusammenfassung

Eine Stunde nach Koronarokklusion wurde anästhesierten Katzen Verapamil (1 mg/kg) intravenös verabreicht. Verapamil reduzierte den mittleren arteriellen Blutdruck signifikant, bewirkte jedoch eine Zunahme der Herzfrequenz, was teilweise einer Reduktion des myokardialen Sauerstoffbedarfs infolge der Druckabnahme entgegenwirkte. Verapamil konnte Anhebungen des ST-Segmentes im Ekg nicht verhindern, verglichen mit Experimenten, in welchen Katzen mit myokardialer Ischämie lediglich das Lösungsmittel für Verapamil (d. h. 0,9% NaCl) appliziert wurde. Auch konnte Verapamil den Anstieg der Kreatinphosphokinase-Aktivität als Folge einer myokardialen Ischämie nicht verhindern. Dennoch verhütete Verapamil einen Verlust von CPK und Aminostickstoff des ischämischen Myokards signifikant, was für einen gewissen Schutzeffekt bezüglich der myokardialen Unversehrtheit spricht. Die wesentlichen Effekte von Verapamil auf den Elektrolytgehalt des ischämischen Myokardgewebes waren eine Abnahme des Natrium-und eine Zunahme des Kaliumgehaltes. Die Zunahme des Calciums wurde durch Verapamil jedoch nicht verhütet. Die Ergebnisse zeigen, daß Verapamil in gewissem Maß einen Schutzeffekt für ischämisches Myokard besitzt, jedoch einige andere Effekte zeigt, die nicht dazu beitragen, das Ausmaß des ischämischen Myokardschadens zu begrenzen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maroko, P. R., J. K. Kjekshus, B. E. Sobel, T. Watanabe, J. E. Covell, J. Ross, Jr., E. Braunwald: Factors influencing infarct size following experimental coronary artery occlusion. Circulation43, 67 (1971).PubMedGoogle Scholar
  2. 2.
    Shell, W. E., B. E. Sobel: Protection of jeopardized ischemic myocardium by reduction of ventricular afterload. New Engl. J. Med.291, 481 (1974).PubMedGoogle Scholar
  3. 3.
    Lefer, A. M., J. R. Cohn, G. H. Osman, Jr.: Protective action of timolol in acute myocardial ischemia. Europ. J. Pharmacol.41, 379 (1977).Google Scholar
  4. 4.
    Reibel, D. K., M. J. Rovetto: Myocardial ATP synthesis and mechanical function following oxygen deficiency. Amer. J. Physiol.234, H 620 (1978).Google Scholar
  5. 5.
    Spath, J. A., Jr., D. L. Lane, A. M. Lefer: Protective action of methylprednisolone on the myocardium during experimental mycoardial ischemia in the cat. Circulat. Res.35, 44 (1974).PubMedGoogle Scholar
  6. 6.
    Okuda, M., K. R. Young, Jr., A. M. Lefer: Localization of glucocorticoid uptake in normal and ischemic myocardial tissue of isolated perfused cat hearts. Circulat. Res.39, 640 (1976).PubMedGoogle Scholar
  7. 7.
    Lefer, A. M., J. A. Spath, Jr. Protective effect of protease inhibition in myocardial ischemia. In:M. Cantin, G. L. Haberland, G. Schnells, andH. Selye (Eds.) New Aspects of Trasylol Therapy, Vol. 8, pp. 311 (Stuttgart, New York 1975).Google Scholar
  8. 8.
    Nayler, W. G., J. Szeto: Effect of verapamil on contractility, oxygen utilization and calcium exchangeability in mammalian heart muscle. Cardiovasc. Res.6, 120 (1972).PubMedGoogle Scholar
  9. 9.
    Reimer, K. A., J. E. Lowe, R. B. Jennings: Effect of the calcium antagonist verapamil on necrosis following temporary coronary artery occlusion in dogs. Circulation55, 581 (1977).PubMedGoogle Scholar
  10. 10.
    Smith, H. J., B. N. Singh, R. M. Norris, H. D. Nisbet, M. B. John, P. J. Hurley: The effect of verapamil on experimental myocardial ischaemia with a particular reference to regional myocardial blood flow and metabolism. Aust. N. Z. J. Med.7, 114 (1977).PubMedGoogle Scholar
  11. 11.
    Karlsberg, R. P., P. D. Henry, S. A. Ahmed, B. E. Sobel, R. Roberts: Lack of protection of ischemic myocardium by verapamil in conscious dogs. Europ. J. Pharmacol.42, 339 (1977).Google Scholar
  12. 12.
    Kjekshus, J. K., B. E. Sobel: Depressed myocardial creatine phosphokinase activity following experimental myocardial infarction in rabbit. Circulat. Res.27, 403 (1970).PubMedGoogle Scholar
  13. 13.
    Gornall, A. B., C. J. Bardowill, M. M. David: Determination of serum proteins by means of the biuret method. J. Biol. Chem.177, 751 (1949).Google Scholar
  14. 14.
    Lefer, A. M., Y. Barenholz: Pancreatic hydrolases and the formation of a myocardial depressant factor in shock. Amer. J. Physiol.223, 1103 (1972).PubMedGoogle Scholar
  15. 15.
    Kabat, E. A.: Estimation of protein with the biuret and ninhydrin reactions. In:E. A. Kabat and M. M. Mayer (Eds.) Experimental Immunochemistry, pp. 559 2nd Edition (Illinois, 1961).Google Scholar
  16. 16.
    Lefer, A. M.: Corticosteroid antagonism of the positive inotropic effect of ouabain. J. Pharmacol. Exptl. Therap.151, 294 (1966).Google Scholar
  17. 17.
    Lefer, A. M., G. B. Craddock, R. Cowgill, E. D. Brand: Performance of papillary muscles isolated from cats in postoligemic shock. Amer. J. Physiol.211, 687 (1966).PubMedGoogle Scholar
  18. 18.
    Bridenbaugh, G. A., J. T. Flynn, A. M. Lefer: Role of arachidonic acid in splanchnic artery occlusion shock. Amer. J. Physiol.231, 112 (1976).PubMedGoogle Scholar
  19. 19.
    Anson, M. L.: Estimation of cathepsin with hemoglobin and the partial purification of cathepsin. J. Gen. Physiol.20, 565 (1936).Google Scholar
  20. 20.
    Talalay, P., W. Fishman, C. Huggins: Chromogenic substances I. Phenolphthalein glucuronic acid as substrate for the assay of glucuronidase activity. J. Biol. Chem.166, 757 (1946).Google Scholar
  21. 21.
    Mangiardi, L. M., R. J. Hariman, R. G. McAllister, Jr., V. Bhargava, B. Surawicz, R. Shabetai: Electrophysiologic and hemodynamic effects of verapamil. Circulation57, 366 (1978).PubMedGoogle Scholar
  22. 22.
    Hagemeijer, F.: Verapamil in management of supraventricular tachyarrhythmias occurring after a recent myocardial infarction. Circulation57, 751 (1978).PubMedGoogle Scholar
  23. 23.
    Fondacaro, J. D., J. Han, M. S. Yoon: Effects of verapamil on ventricular rhythm during acute coronary occlusion. Amer. Heart J.96, 81 (1978).PubMedGoogle Scholar
  24. 24.
    Sandler, G., G. A. Clayton, S. G. Thornicroft: Clinical evaluation of verapamil in angina pectoris. Brit. Med. J.1968/III, 224.Google Scholar
  25. 25.
    Singh, B. N., A. H. G. Roche: Effects of intravenous verapamil on hemodynamics in patients with heart disease. Amer. Heart J.94, 593 (1977).PubMedGoogle Scholar
  26. 26.
    Lewis, B. S., A. S. Mitha, M. S. Gotsman: Immediate haemodynamic effects of verapamil in man. Cardiology60, 366 (1975).PubMedGoogle Scholar
  27. 27.
    Neugebauer, G.: Comparative cardiovascular actions of verapamil and its major metabolites in the anaesthetized dogs. Cardiovasc. Res.12, 247 (1978).PubMedGoogle Scholar
  28. 28.
    Nayler, W. G., D. Krinkler: Verapamil and the myocardium. Postgrad. Med. J.50, 411 (1974).Google Scholar
  29. 29.
    Bristow, M. R., R. D. Green: Effect of diazoxide, verapamil, and D 600 on isoproterenol and calcium-mediated dose-response relation ships in isolated rabbit atrium. Europ. J. Pharmacol.45, 267 (1977).Google Scholar
  30. 30.
    Hoeschen, R. J.: Effects of verapamil on (Na++K+)-ATPase, and adenylate cyclase activity in a membrane fraction from rat and guinea pig ventricular muscle. Canad. J. Physiol. Pharmacol.55, 1098 (1977).Google Scholar
  31. 31.
    Cranefield, P. F.: The conduction of the cardiac impulse (Mt. Kisco, NY, 1975).Google Scholar
  32. 32.
    Smith, H. J., M. B. Richard, A. Goldstein, J. M. Griffith, K. M. Kent, S. E. Epstein: Regional contractility: Selective depression of ischemic myocardium by verapamil. Circulation54, 629 (1976).PubMedGoogle Scholar
  33. 33.
    Nayler, W. G., A. Grau, A. Slade: A protective effect of verapamil on hypoxic heart muscle. Cardiovasc. Res.10, 650 (1976).PubMedGoogle Scholar
  34. 34.
    Bache, R. F., F. R. Cobb, J. C. Greenfield, Jr.: Myocardial blood flow distribution during ischemic-induced coronary vasodilation in the unanesthetized dog. J. Clin. Invest.54, 1426 (1974).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1979

Authors and Affiliations

  • A. M. Lefer
    • 1
    • 2
  • E. W. Polansky
    • 1
    • 2
  • C. P. Bianchi
    • 1
    • 2
  • S. Narayan
    • 1
    • 2
  1. 1.Department of Physiology, Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Department of Pharmacology, Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations