Skip to main content
Log in

Modulation of tension generation at the myofibrillar level—an analysis of the effect of magnesium adenosine triphosphate, magnesium, pH, sarcomere length and state of phosphorylation

Die Modulation der Spannungsentwicklung auf der Ebene der Myofibrillen—Wirkung von Magnesium-Adenosintriphosphat, Magnesium, pH, Sarkomerenlänge und Grad der Phosphorylierung

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

It is well documented that changes in contractility of the heart can originate from alterations at the level of the sarcolemma and the intracellular Ca2+ stores. Less is known on the modulatory properties of the myofibrils. Using skinned fibres, the response of the myofibrils in terms of tension generation can be varied to a great extent at a fixed myoplasmic free [Ca2+]. TheHill equation provides a basis for characterizing the Ca2+-dependent activation in terms of co-operativity, Ca2+ sensitivity and tension at full activation. Three formally different types of activation curves are possible. Using this approach, a great number of tension vs. free [Ca2+] data were critically evaluated.

A most interesting property of the myofibrils is their ability to respond to changes in free [Ca2+] in a co-operative manner. In isolated preparations the degree ofco-operativity is apparently quite variable. By analyzing 16 published activation curves it was found that theHill n ranges between 1.0 and about 12. Beside the muscle type and probably methodological differences, also other factors contribute to this variation inHill n, such as a low [MgATP] and a low [Mg2+]. At a given intracellular Ca2+-transient, the co-operativity of the contractile system would influence both, the time-course of tension development and the extent of activation.

Among the factors which increase theCa 2+ sensitivity of the contractile system are decreasing [Mg2+] (5→0.05 mM), increasing pH (6→7), a less favourable overlap of the filaments and dephosphorylation of troponin I. It might be expected that changes in the Ca2+ sensitivity arise from the level of troponin. This holds most probably for the effects induced by Mg2+ and phosphorylation of troponin I. The effect of stretch or of H+ does probably not originate solely from the thin filaments. Alterations in Ca2+ sensitivity provide a mechanism for modulating the degree of activation at a given intracellular [Ca2+]. This mechanism plays certainly a role in changes in contractility during hypoxia, ischemia and acidosis.

The third parameter,tension at full activation is increased by a decreasing [MgATP] (4→0.03mM), increasing pH (6→7) and a more favourable overlap of the filaments. The effect of MgATP is attributed to a substrate inhibition at high [MgATP]. A decreasing sarcomere length results in a greater number of interacting sites between thin and thick filaments and so enhances maximum tension.

It should be pointed out that some of the above effects are of an opposite nature. For example, in ischemia the Ca2+ sensitivity and maximum tension is decreased due to acidosis. Concomitantly, [MgATP] is reduced resulting in a shift of the activation curve to lower [Ca2+] and an increase in maximum tension.

Thus it is difficult to predict the response of a contractile system under certain pathophysiological conditions. It should also be kept in mind that the intact cardiac cell might react in a different way due to the action of the sarcolemma or the intracellular Ca2+ stores. Nevertheless, the present approach should prove helpful in tracing changes in contractile activity of the intact myocardium to molecular events at the myofibrillar level.

Zusammenfassung

Es ist gut dokumentiert, daß Ąnderungen in der Kontraktilität des Herzens auf Vorgängen auf der Ebene des Sarkolemms und der intrazellulären Ca2+-Speicher beruhen können. Die Möglichkeit einer Modulation der Kraftenwicklung auf der Ebene der Myofibrillen ist weniger gut untersucht. Bei gehäuteten Fasern kann die Kraftentwicklung bei einer gegebenen freien [Ca2+] stark variiert werden. Die Hill-Gleichung bietet die Möglichkeit, die Ca2+-abhängige Aktivierung in bezug auf die Kooperativität, die Ca2+-Sensitivität und die Spannung bei Vollaktivierung zu charakterisieren. So gibt es drei formal verschiedene Arten von Aktivierungskurven. Mit diesem Verfahren wurde eine große Zahl von Daten (% Spannung gegen freie [Ca2+]) ausgewertet.

Von großem Interesse ist, daß Myofibrillen eine positiveKooperativität in bezug auf die Ca2+-Aktivierung aufweisen. Bei isolierten Präparaten variiert das Maß an Kooperativität ziemlich stark. Wie die Analyse von 16 publizierten Aktivierungskurven zeigt, bewegt sich der Hill-n-Wert zwischen 1,0 und ungefähr 12. Neben der Art des Muskels und methodischen Unterschieden tragen auch andere Faktoren zu dieser Variation bei, so wie niedrige [MgATP] und [Mg2+]. Bei einem gegebenen intrazellulären Ca2+-Transienten bestimmt die Kooperativität über die Steilheit der Aktivierungskurve sowohl den zeitlichen Verlauf der Spannungsentwicklung als auch den Aktivierungsgrad.

Zu den Faktoren, die dieCa 2+-Sensitivität des kontraktilen Systems erhöhen, zählen eine abnehmende [Mg2+] (5→0,05 mM), zunehmender pH-Wert (6→7), eine weniger günstige Überlappung der Filamente und die Dephosphorylierung von Troponin I. Es wäre zu erwarten, daß Veränderungen in der Ca2+-Sensitivität ihren Ursprung am Troponin haben. Dies trifft sehr wahrscheinlich zu für die Effekte, die durch Mg2+ und Phosphorylierung von Troponin I hervorgerufen werden. Die Wirkung von Dehnung und von H+ geht wahrscheinlich nicht allein von den dünnen Filamenten aus. Veränderungen in der Ca2+-Sensitivität erlauben es, den Aktivierungsgrad bei einer vorgegebenen intrazellulären [Ca2+] zu modulieren. Dieser Mechanismus spielt sicherlich eine Rolle bei Veränderungen der Kontraktilität während einer Hypoxie, Ischämie und Azidose.

Der dritte Parameter, dieSpannung bei Vollaktivierung, ist erhöht bei einer abnehmenden [MgATP] (4→0,03 mM), zunehmendem pH-Wert (6→7) und einer günstigeren Überlappung der Filamente. Der MgATP-Effekt wird einer Substrathemmung bei hoher [MgATP] zugeordnet. Eine abnehmende Sarkomerenlänge führt zu einer größeren Zahl von Interaktionsstellen zwischen dünnen und dicken Filamenten und erhöht somit die maximale Spannung.

Es soll hervorgehoben werden, daß einige der obengenannten Effekte gegenläufig sind. Zum Beispiel führt die Azidose, ausgelöst durch eine Ischämie, zu einer Abnahme der Ca2+-Sensitivität und der maximalen Spannung. Gleichzeitig ist jedoch [MgATP] erniedrigt und führt so zu einer Verschiebung der Aktivierungskurve zu niedrigeren [Ca2+] und zu einer Zunahme der maximalen Spannung.

Dies deutet die Schwierigkeit an, die Antwort eines kontraktilen Systems unter bestimmten pathophysiologischen Bedingungen vorauszusagen. Weiterhin sollte berücksichtigt werden, daß die intakte Myokardzelle in einer anderen Weise reagieren kann, zurückzuführen auf die Wirkung des Sarkolemms oder der intrazellulären Ca2+-Speicher. Trotz aller Einschränkungen sollte die hier beschriebene Analyse es ermöglichen, Veränderungen in der Kontraktilität des intakten Myokards mit molekularen Vorgängen auf der Ebene der Myofibrillen in Beziehung zu setzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hasselbach, W.: Release and uptake of calcium by the sarcoplasmic reticulum. In: Molecular Basis of Motility,Heilmeyer, L. M. G., Jr., J. C. Rüegg, Th. Wieland (eds.) 81–92 (Berlin-Heidelberg-New York 1976).

  2. Perry, S. V.: The regulation of contractile activity in muscle. Biochem. Soc. Transactions7, 593–617 (1979).

    Google Scholar 

  3. Hill, A. V.: The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem. J.7, 471–480 (1913).

    Google Scholar 

  4. Julian, F. J., M. R. Sollins: Regulation of force and speed of shortening in muscle contraction. Cold Spring Harbor Symp. Quant. Biol.37, 635–646 (1973).

    Google Scholar 

  5. Kerrick, W. G. L., S. K. B. Donaldson: The comparative effects of [Ca2+] and [Mg2+] on tension generation in the fibers of skinned frog skeletal muscle and mechanically disrupted rat ventricular cardiac muscle. Pflügers Arch.358, 195–201 (1975).

    Google Scholar 

  6. Donaldson, S. K. B., W. G. L. Kerrick: Characterization of the effects of Mg2+ on Ca2+-and Sr2+-activated tension generation of skinned skeletal muscle fibers. J. Gen. Physiol.66, 427–444 (1975).

    Google Scholar 

  7. Kerrick, W. G. L., D. Secrist, R. Coby, S. Lucas: Development of difference between red and white muscles in sensitivity to Ca2+ in the rabbit from embryo to adult. Nature260, 440–441 (1976).

    PubMed  Google Scholar 

  8. Best, P. M., S. K. B. Donaldson, W. G. L. Kerrick: Tension in mechanically disrupted mammalian cardiac cells: Effects of magnesium adenosine triphosphate. J. Physiol.265, 1–17 (1977).

    PubMed  Google Scholar 

  9. Donaldson, S. K. B., P. M. Best, W. G. L. Kerrick: Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers. J. Gen. Physiol.71, 645–655 (1978).

    PubMed  Google Scholar 

  10. Robertson, S. P., W. G. L. Kerrick: The effects of pH on Ca2+-activated force in frog skeletal muscle fibers. Pflügers Arch.380, 41–45 (1979).

    Google Scholar 

  11. Koshland, D. E. Jr.: The molecular basis for enzyme regulation. In: The Enzymes, Vol. 1, 3rd ed.,Boyer, P. D. (ed.) 341–396 (New York 1970).

  12. Wieker, H.-J., K.-J. Johannes, B. Hess: A computer program for the determination of kinetic parameters from sigmoidal steady-state kinetics. FEBS Lett.8, 178–185 (1970).

    PubMed  Google Scholar 

  13. Maughan, D., E. Low, R. Litten, III, J. Brayden, N. Alpert: Calcium-activated muscle from hypertrophied rabbit hearts. Circ. Res.44, 279–287 (1979).

    PubMed  Google Scholar 

  14. Rupp, H., K. K. Rao, D. O. Hall, R. Cammack: Electron spin relaxation of ironsulphur proteins studied by microwave power saturation. Biochim. Biophys. Acta537, 255–269 (1978).

    PubMed  Google Scholar 

  15. Moore, A. L., H. Rupp: The interaction of ubisemiquinones with the ironsulphur centre S-3 of succinate dehydrogenase in plant mitochondria. FEBS Lett.93, 73–77 (1978).

    Google Scholar 

  16. Rupp, H., A. L. Moore: Characterization of iron-sulphur centres of plant mitochondria by microwave power saturation. Biochim. Biophys. Acta548, 16–29 (1979).

    PubMed  Google Scholar 

  17. Rupp, H., A. de la Torre, D. O. Hall: The electron spin relaxation of the electron acceptors of photosystem I reaction centre studied by microwave power saturation. Biochim. Biophys. Acta548, 552–564 (1979).

    PubMed  Google Scholar 

  18. Rupp, H., J. Verplaetse, R. Lontie: Binuclear copper electron paramagnetic resonance signals of α-methemocyanin ofHelix Pomatia. Z. Naturforschung35c, 188–192 (1980).

    Google Scholar 

  19. Rupp, H., R. Cammack, H.-J. Hartmann, U. Weser: Oxidation-reduction reactions of copper-thiolate centres in Cu-thionein. Biochim. Biophys. Acta578, 462–475 (1979).

    PubMed  Google Scholar 

  20. Rupp, H.: Cooperative effects of calcium on myofibrillar ATPase of normal and hypertrophied heart. Basic Res. Cardiol.75, 157–162 (1980).

    PubMed  Google Scholar 

  21. Hellam, D. C., R. J. Podolsky: Force measurements in skinned muscle fibres. J. Physiol.200, 807–819 (1969).

    PubMed  Google Scholar 

  22. Julian, F. J.: The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol.218, 117–145 (1971).

    PubMed  Google Scholar 

  23. Godt, R. E.: Calcium-activated tension of skinned muscle fibers of the frog. J. Gen. Physiol.63, 722–739 (1974).

    Google Scholar 

  24. Levy, R. M., Y. Umazume, M. J. Kushmerick: Ca2+ dependence of tension and ADP production in segments of chemically skinned muscle fibers. Biochim. Biophys. Acta430, 352–365 (1976).

    PubMed  Google Scholar 

  25. Filo, R. S., D. F. Bohr, J. C. Rüegg: Glycerinated skeletal and smooth muscle: Calcium and magnesium dependence. Science147, 1581–1583 (1965).

    PubMed  Google Scholar 

  26. Brenner, B.: Indirekter Nachweis einer dehnungsinduzierten Ca++-Freisetzung aus dem sarkoplasmatischen Retikulum glyzerinisierter Skelett- und Herzmuskelpräparate. Basic Res. Cardiol.74, 177–202 (1979).

    PubMed  Google Scholar 

  27. Schädler, M.: Proportionale Aktivierung von ATPase-Aktivität und Kontraktionsspannung durch Calciumionen in isolierten contractilen Strukturen verschiedener Muskelarten. Pflügers Archiv296, 70–90 (1967).

    Google Scholar 

  28. Henry, P. D., G. G. Ahumada, W. F. Friedman, B. E. Sobel: Simultaneously measured isometric tension and ATP hydrolysis in glycerinated fibers from normal and hypertrophied rabbit heart. Circ. Res.31, 740–749 (1972).

    PubMed  Google Scholar 

  29. Solaro, R. J., R. M. Wise, J. S. Shiner, F. N. Briggs: Calcium requirements for cardiac myofibrillar activation. Circ. Res.34, 525–530 (1974).

    PubMed  Google Scholar 

  30. Reiermann, H. J., J. W. Herzig, J. C. Rüegg: Ca++ activation of ATPase activity, ATP-Pi exchange, and tension in briefly glycerinated heart muscle. Basic Res. Cardiol.72, 133–139 (1977).

    PubMed  Google Scholar 

  31. Portzehl, H., P. Zaoralek, A. Grieder: Der Calcium-Spiegel in lebenden und isolierten Muskelfibrillen von Maia Squinado und seine Regulierung durch die sarkoplasmatischen Vesikel. Pflügers Archiv286, 44–56 (1965).

    Google Scholar 

  32. Mrwa, U., I. Achtig, J. C. Rüegg: Influences of calcium concentration and pH on the tension development and ATPase activity of the arterial actomyosin contractile system. Blood Vessels11, 277–286 (1974).

    PubMed  Google Scholar 

  33. Saida, K., Y. Nonomura: Characteristics of Ca2+- and Mg2+-induced tension development in chemically skinned smooth muscle fibers. J. Gen. Physiol.72, 1–14 (1978).

    PubMed  Google Scholar 

  34. Winegrad, S.: Studies of cardiac muscle with a permeability to calcium produced by treatment with ethylenediaminetetraacetic acid. J. Gen. Physiol.58, 71–93 (1971).

    PubMed  Google Scholar 

  35. Miller, D. J.: Are cardiac muscle cells ‘skinned’ by EGTA or EDTA? Nature277, 142–143 (1979).

    PubMed  Google Scholar 

  36. Fabiato, A., F. Fabiato: Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol.249, 469–495 (1975).

    PubMed  Google Scholar 

  37. Burt, C. T., T. Glonek, M. Bárány: Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J. Biol. Chem.251, 2584–2591 (1976).

    PubMed  Google Scholar 

  38. Hoult, D. I., S. J. W. Busby, D. G. Gadian, G. K. Radda, R. E. Richards, P. J. Seeley: Observation of tissue metabolites using31P nuclear magnetic resonance. Nature252, 285–287 (1974).

    PubMed  Google Scholar 

  39. Orentlicher, M., P. W. Brandt, J. P. Reuben: Regulation of tension in skinned muscle fibers: effect of high concentrations of Mg-ATP. Amer. J. Physiol.233, C127-C134 (1977).

    PubMed  Google Scholar 

  40. Bremel, R. D., A. Weber: Cooperation within actin filament in vertebrate skeletal muscle. Nature New Biol.238, 97–101 (1972).

    Google Scholar 

  41. Polimeni, P. I., E. Page: Magnesium in heart muscle. Circ. Res.33, 367–374 (1973).

    PubMed  Google Scholar 

  42. Page, E., P. I. Polimeni, R. Zak, J. Earley, M. Johnson: Myofibrillar mass in rat and rabbit heart muscle. Circ. Res.30, 430–439 (1972).

    PubMed  Google Scholar 

  43. Cummings, J. R.: Electrolyte changes in heart tissue and coronary arterial and venous plasma following coronary occlusion. Circ. Res.8, 865–870 (1960).

    PubMed  Google Scholar 

  44. Beller, G. A., W. B. Hood, Jr., T. W. Smith, W. H. Abelmann, W. E. C. Wacker: Prevalence of hypomagnesemia in a prospective clinical study of digitalis intoxication. Amer. J. Cardiol.26, 625 (1970).

    Google Scholar 

  45. Gupta, R. K., R. D. Moore: Studies of intracellular free Mg2+ in frog sartorius muscle. Biophys. J.25, 122a (1979).

    Google Scholar 

  46. Chipperfield, B., J. R. Chipperfield: Magnesium and the heart. Amer. Heart J.93, 679–682 (1977).

    PubMed  Google Scholar 

  47. Fuchs, F., M. Bayuk: Cooperative binding of calcium to glycerinated skeletal muscle fibers. Biochim. Biophys. Acta440, 448–455 (1976).

    PubMed  Google Scholar 

  48. Potter, J. D., B. Nagy, J. H. Collins, J. C. Seidel, P. Leavis, S. S. Lehrer, J. Gergely: The role of the interaction of Ca2+ with troponin in the regulation of muscle contraction. In: Molecular Basis of Motility,Heilmeyer, L. M. G., Jr.J. C. Rüegg, Th. Wieland (eds.) 93–106 (Berlin-Heidelberg-New York 1976).

  49. Burtnick, L. D., C. M. Kay: The calcium-binding properties of bovine cardiac troponin C. FEBS Lett.75, 105–110 (1977).

    PubMed  Google Scholar 

  50. Leavis, P. C., E. L. Kraft: Calcium binding to cardiac troponin C. Arch. Biochem. Biophys.186, 411–415 (1978).

    PubMed  Google Scholar 

  51. Johnson, J. D., S. C. Charlton, J. D. Potter: A fluorescence stopped flow analysis of Ca2+ exchange with troponin C. J. Biol. Chem.254, 3497–3502 (1979).

    PubMed  Google Scholar 

  52. Bremel, R. D., A. Weber: Calcium binding to rabbit skeletal myosin under physiological conditions. Biochim. Biophys. Acta376, 366–374 (1975).

    PubMed  Google Scholar 

  53. Watterson, J. G., L. Kohler, M. C. Schaub: Evidence for two distinct affinities in the binding of divalent metal ions to myosin. J. Biol. Chem.254, 6470–6477 (1979).

    PubMed  Google Scholar 

  54. Holroyde, M. J., J. D. Potter, R. J. Solaro: The calcium binding properties of phosphorylated and unphosphorylated cardiac and skeletal myosins. J. Biol. Chem.254, 6478–6482 (1979).

    PubMed  Google Scholar 

  55. Lehman, W.: Thick-filament-linked calcium regulation in vertebrate striated muscle. Nature274, 80–81 (1978).

    PubMed  Google Scholar 

  56. Bagshaw, C. R.: On the location of the divalent metal binding sites and the light chain subunits of vertebrate myosin. Biochemistry16, 59–67 (1977).

    PubMed  Google Scholar 

  57. Fabiato, A., F. Fabiato: Effects of magnesium on contractile activation of skinned cardiac cells. J. Physiol.249, 497–517 (1975).

    PubMed  Google Scholar 

  58. Fuchs, F.: On the relation between filament overlap and the number of calcium-binding sites on glycerinated muscle fibers. Biophys. J.21, 273–277 (1978).

    PubMed  Google Scholar 

  59. Katz, A. M., H. H. Hecht: Early “pump” failure of the ischaemic heart. Amer. J. Med.47, 497–502 (1969).

    PubMed  Google Scholar 

  60. Schaffer, S. W., B. Safer, C. Ford, J. Illingworth, J. R. Williamson: Respiratory acidosis and its reversibility in perfused rat heart: regulation of citric acid cycle activity. Amer. J. Physiol.234, H40-H51 (1978).

    PubMed  Google Scholar 

  61. Salhany, J. M., G. M. Pieper, S. Wu, G. L. Todd, F. C. Clayton, R. S. Eliot:31P nuclear magnetic resonance measurement of cardiac pH in perfused guinea-pig hearts. J. Mol. Cell. Cardiol.11, 601–610 (1979).

    PubMed  Google Scholar 

  62. Weser, U., G.-J. Strobel, H. Rupp, W. Voelter: Nuclear-magnetic-resonance with13C and31P and circular dichroism studies of a ternary complex of spermine, Cu2+ and AMP. Eur. J. Biochem.50, 91–99 (1974).

    PubMed  Google Scholar 

  63. Fabiato, A., F. Fabiato: Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol.276, 233–255 (1978).

    PubMed  Google Scholar 

  64. Donaldson, S. K. B., L. Hermansen: Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflügers Arch.376, 55–65 (1978).

    Google Scholar 

  65. Robertson, S. P., J. D. Johnson, J. D. Potter: The effects of pH on calcium binding to the Ca2+−Mg2+ and the Ca2+-specific sites of rabbit skeletal TnC. Biophys. J.21, 16a (1978).

    Google Scholar 

  66. Robertson, S. P., J. D. Johnson, J. D. Potter: The effects of pH on calcium binding to the Ca2+−Mg2+ and the Ca2+-specific sites of bovine cardiac TnC. Circulation58, II, 72 (1978).

    Google Scholar 

  67. Fuchs, F.: The relationship between pH and the amount of calcium bound to glycerinated muscle fibers. Biochim. Biophys. Acta585, 477–479 (1979).

    PubMed  Google Scholar 

  68. Mattiazzi, A. R., H. E. Cingolani, E. Spacapan de Castuma: Relationship between calcium and hydrogen ions in heart muscle. Amer. J. Physiol.237, H497-H503 (1979).

    PubMed  Google Scholar 

  69. Gordon, A. M., A. F. Huxley, F. J. Julian: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol.184, 170–192 (1966).

    PubMed  Google Scholar 

  70. Endo, M.: Stretch-induced increase in activation of skinned muscle fibres by calcium. Nature New Biol.237, 211–213 (1972).

    PubMed  Google Scholar 

  71. Fabiato, A., F. Fabiato: Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J. Gen. Physiol.72, 667–699 (1978).

    Google Scholar 

  72. Allen, D. G., J. R. Blinks: Calcium transients in aequorin-injected frog cardiac muscle. Nature273, 509–513 (1978).

    PubMed  Google Scholar 

  73. Blinks, J. R., R. Rüdel, S. R. Taylor: Calcium transients in isolated amphibian skeletal muscle fibres: Detection with aequorin. J. Physiol.277, 291–323 (1978).

    PubMed  Google Scholar 

  74. Moir, A. J. G., S. V. Perry: The sites of phosphorylation of rabbit cardiac troponin I by adenosine 3′∶5′-cyclic monophosphate-dependent protein kinase. Effect of interaction with troponin C. Biochem. J.167, 333–343 (1977).

    PubMed  Google Scholar 

  75. Ray, K. P., P. J. England: Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase. FEBS Lett.70, 11–16 (1976).

    PubMed  Google Scholar 

  76. England, P. J.: Studies on the phosphorylation of the inhibitory subunit of troponin during modification of contraction in perfused rat heart. Biochem. J.160, 295–304 (1976).

    PubMed  Google Scholar 

  77. Solaro, R. J., A. J. G. Moir, S. V. Perry: Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature262, 615–617 (1976).

    PubMed  Google Scholar 

  78. Herzig, J. W., G. Köhler: Effect of c-AMP dependent phosphorylation of myocardial regulatory proteins on Ca++ activated force development, unloaded shortening and actomyosin ATPase in glycerinated heart muscle fibres and myofibrils. Pflügers Archiv382, R25 (1979).

    Google Scholar 

  79. Pires, E., S. V. Perry, M. A. W. Thomas: Myosin light-chain kinase, a new enzyme from striated muscle. FEBS Lett.41, 292–296 (1974).

    PubMed  Google Scholar 

  80. Morgan, M., S. V. Perry, J. Ottaway: Myosin light-chain phosphatase. Biochem. J.157, 687–697 (1976).

    PubMed  Google Scholar 

  81. Bárány, K., M. Bárány, J. M. Gillis, M. J. Kushmerick: Phosphorylation-dephosphorylation of the 18,000-dalton light chain of myosin during the contraction-relaxation cycle of frog muscle. J. Biol. Chem.254, 3617–3623 (1979).

    PubMed  Google Scholar 

  82. Bárány, M., K. Bárány: Effect of phosphorylation of myosin light chain in intact frog muscle on the bound calcium of actin. Biophys. J.25, 74a (1979).

    Google Scholar 

  83. Tawada, Y., H. Ohara, T. Ooi, K. Tawada: Non-polymerizable tropomyosin and control of the superprecipitation of actomyosin. J. Biochem.78, 65–72 (1975).

    PubMed  Google Scholar 

  84. Phillips, G. N., Jr., E. E. Lattman, P. Cummins, K. Y. Lee, C. Cohen: Crystal structure and molecular interactions of tropomyosin. Nature278, 413–417 (1979).

    PubMed  Google Scholar 

  85. Porter, M., A. Weber: Non-cooperative response of actin-cystein 373 in cooperatively behaving regulated actin filaments. FEBS Lett.105, 259–262 (1979).

    PubMed  Google Scholar 

  86. Smillie, L. B.: Structure and functions of tropomyosins from muscle and non-muscle sources. Trends Biochem. Sciences4, 151–155 (1979).

    Google Scholar 

  87. Plasticity of Muscle (Pette, D., ed.) Walter de Gruyter, Berlin (in the press).

  88. Long, L., F. Fabian, D. T. Mason, J. Wikman-Coffelt: A new cardiac myosin characterized from the canine atria. Biochem. Biophys. Res. Commun.76, 626–635 (1977).

    PubMed  Google Scholar 

  89. Sartore, S., S. Pierobon-Bormioli, S. Schiaffino: Immunohistochemical evidence for myosin polymorphism in the chicken heart. Nature274, 82–83 (1978).

    PubMed  Google Scholar 

  90. Hoh, J. F. Y., P. A. McGrath, P. T. Hale: Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J. Mol. Cell. Cardiol.10, 1053–1076 (1977).

    Google Scholar 

  91. Lompre, A.-M., K. Schwartz, A. d'Albis, G. Lacombe, N. Van Thiem, B. Swynghedauw: Myosin isoenzyme redistribution in chronic heart overload. Nature282, 105–107 (1979).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupp, H. Modulation of tension generation at the myofibrillar level—an analysis of the effect of magnesium adenosine triphosphate, magnesium, pH, sarcomere length and state of phosphorylation. Basic Res Cardiol 75, 295–317 (1980). https://doi.org/10.1007/BF01907579

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907579

Navigation