Pflügers Archiv - European Journal of Physiology

, Volume 412, Issue 4, pp 427–433 | Cite as

Effect of acute metabolic acidosis on transmembrane electrolyte gradients in individual renal tubule cells

  • F. -X. Beck
  • M. Schramm
  • A. Dörge
  • R. Rick
  • K. Thurau
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands


We studied the effect of acute metabolic acidosis on potassium, sodium and chloride gradients across the apical membrane of proximal and distal tubule cells by determining electrolyte concentrations in individual cells and in tubule fluid employing electron microprobe analysis. Cellular measurements were performed on freeze-dried cryosections of the renal cortex, analysis of tubule fluid electrolyte concentrations on freeze-dried microdroplets of micropuncture samples obtained from proximal and from early and late distal collection sites. Acidosis (NH4Cl i.v. and i.g.) induced a substantial rise in plasma potassium concentration without significant effects on cell potassium concentrations. Potassium concentrations along the surface distal tubule were also unaltered; thus the chemical driving force for potassium exit from cell to lumen was not affected by acidosis. In all but intercalated cells acidosis markedly increased cell phosphorus concentration and cell dry weight indicating cell shrinkage and thus diminution of cell potassium content. Because the increase in intracellular chloride concentration exceeded the increase in plasma chloride concentration, the chemical chloride gradient across the contraluminal membrane was markedly depressed by acidosis.

Key words

Acute metabolic acidosis Renal distal electrolyte transport Renal cell electrolyte concentrations Individual distal tubule cells Transmembrane electrolyte concentration gradients Electron microprobe analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer R, Rick R (1978) Computer analysis of X-ray spectra (EDS) from thin biological specimens. X-ray Spectrom 7:63–69CrossRefGoogle Scholar
  2. 2.
    Beck F, Bauer R, Bauer U, Mason J, Dörge A, Rick R, Thurau K (1980) Electron microprobe analysis of intracellular elements in the rat kidney. Kidney Int 17:756–763CrossRefPubMedGoogle Scholar
  3. 3.
    Beck F, Dörge A, Mason J, Rick R, Thurau K (1982) Element concentrations of renal and hepatic cells under potassium depletion. Kidney Int 22:250–256CrossRefPubMedGoogle Scholar
  4. 4.
    Beck FX, Dörge A, Rick R, Schramm M, Thurau K (1987) Effect of potassium adaptation on the distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells. Pflügers Arch 409:477–485CrossRefPubMedGoogle Scholar
  5. 5.
    Beck FX, Dörge A, Rick R, Schramm M, Thurau K (1987) The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effect of acute metabolic alkalosis. Pflügers Arch, in pressGoogle Scholar
  6. 6.
    Beck FX, Dörge A, Giebisch G, Thurau K (1988) Rubidium uptake into individual tubule cells: a method for studying functional heterogeneity in the nephron. Kidney Int 33:642–651CrossRefPubMedGoogle Scholar
  7. 7.
    Boudry JF, Stoner LC, Burg MB (1976) Effect of acid lumen pH on potassium transport in renal cortical collecting tubules. Am J Physiol 230:239–244PubMedGoogle Scholar
  8. 8.
    Cemerikic D, Wilcox CS, Giebisch G (1982) Intracellular potential and K+ depletion. J Membr Biol 69:159–165CrossRefPubMedGoogle Scholar
  9. 9.
    Cook DL, Ikeuchi M, Fujimoto WY (1984) Lowering of pH inhibits Ca2+-activated K+ channels in pancreatic B-cells. Nature 311:269–271CrossRefPubMedGoogle Scholar
  10. 10.
    Costanzo LS, Windhager EE (1986) Transport functions of the distal convoluted tubule. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) Physiology of membrane disorders, chapt 40, 2nd edn. Plenum Medical Book Company, New York London, pp 727–750CrossRefGoogle Scholar
  11. 11.
    Crayen M, Thoenes W (1975) Architektur und cytologische Charakterisierung des distalen Tubulus der Rattenniere. Fortschr Zool 23:279–288PubMedGoogle Scholar
  12. 12.
    De Mello-Aires M, Giebisch G, Malnic G (1973) Kinetics of potassium transport across single distal tubules of rat kidney. J Physiol 232:47–70CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dörge A, Rick R, Gehring K, Thurau K (1978) Preparation of freeze-dried cryosections for quantitative X-ray microanalysis of electrolytes in biological soft tissues. Pflügers Arch 373:85–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Ellison DH, Velazquez H, Wright FS (1985) Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am J Physiol 248:F638–F649PubMedGoogle Scholar
  15. 15.
    Führ J, Kaczmarczyk J, Krüttgen CD (1955) Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr 33:729–730CrossRefPubMedGoogle Scholar
  16. 16.
    Giebisch G, Malnic G, Berliner RW (1986) Renal transport and control of potassium excretion. In: Brenner BM, Rector FC Jr (eds) The kidney, chapt 6, vol I, 3rd ed. Saunders, Philadelphia, pp 177–205Google Scholar
  17. 17.
    Greger R, Gögelein H (1987) Role of K+ conductive pathways in the nephron. Kidney Int 31:1055–1064CrossRefPubMedGoogle Scholar
  18. 18.
    Hunter M, Oberleithner H, Henderson R, Giebisch G (1987) Potassium conductance of single amphibian diluting segment cells studied by whole cell patch-clamp: inhibition by internal pH. Proc Xth Int Congr Nephr 571Google Scholar
  19. 19.
    Jørgensen PL, Klaerke DA (1987) Structural basis for regulation of active NaCl transport in thick ascending limb of Henles loop. In: Kovacevic Z, Guder WG (eds) Molecular nephrology. Biochemical aspects of kidney function. De Gruyter, Berlin New York, pp 71–76Google Scholar
  20. 20.
    Kaissling B (1982) Structural aspects of adaptive changes in renal electrolyte excretion. Am J Physiol 243:F211–F226PubMedGoogle Scholar
  21. 21.
    Kaissling B, Le Hir M (1982) Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. I. Structural changes. Cell Tissue Res 224:469–492CrossRefPubMedGoogle Scholar
  22. 22.
    Khuri RN, Agulian SK, Kalloghlian A (1972) Intracellular potassium in cells of the distal tubule. Pflügers Arch 335:297–308CrossRefPubMedGoogle Scholar
  23. 23.
    Khuri RN, Agulian SK, Bogharian K (1974) Electrochemical potentials of potassium in proximal renal tubule of rat. Pflügers Arch 346:319–326CrossRefPubMedGoogle Scholar
  24. 24.
    Koeppen BM, Biagi BA, Giebisch GH (1983) Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol 244:F35–F47PubMedGoogle Scholar
  25. 25.
    Koeppen B, Giebisch G, Malnic G (1985) Mechanism and regulation of renal tubular acidification. In: Seldin DW, Giebisch G (eds) The kidney — physiology and pathophysiology, chapt 65, vol 2. Raven Press, New York, pp 1491–1525Google Scholar
  26. 26.
    Levine DZ (1985) An in vivo microperfusion study of distal tubule bicarbonate reabsorption in normal and ammonium chloride rats. J Clin Invest 75:588–595CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Madsen KM, Tisher CC (1986) Structural-functional relationships along the distal nephron. Am J Physiol 250:F1–F15Google Scholar
  28. 28.
    Malnic G, De Mello-Aires M, Giebisch G (1971) Potassium transport across renal distal tubules during acid-base disturbances. Am J Physiol 221:1192–1208PubMedGoogle Scholar
  29. 29.
    Muto S, Giebisch G, Sansom S (1987) Effect of adrenalectomy on electrical properties of the rabbit cortical collecting duct: evidence for differential response of two cell types. Am J Physiol 253:F742–F752PubMedGoogle Scholar
  30. 30.
    O'Neill RG, Sansom SC (1984) Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J Membr Biol 82:281–295CrossRefGoogle Scholar
  31. 31.
    O'Neil RG, Hayhurst RA (1985) Functional differentiation of cell types of cortical collecting duct. Am J Physiol 248:F449–F452PubMedGoogle Scholar
  32. 32.
    Palmer LG, Frindt G (1987) Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am J Physiol 253:F333–F339PubMedGoogle Scholar
  33. 33.
    Perez GO, Oster JR, Vaamonde CA, Katz FH (1977) Effect of NH4Cl on plasma aldosterone, cortisol and renin activity in supine man. J Clin Endocrinol Metab 45:762–767CrossRefPubMedGoogle Scholar
  34. 34.
    Perez GO, Oster JR, Katz FH, Vaamonde CA (1979) The effect of acute metabolic acidosis on plasma cortisol, renin activity and aldosterone. Horm Res 11:12–21CrossRefPubMedGoogle Scholar
  35. 35.
    Sartorius OW, Roemmelt JC, Pitts RF (1949) The renal regulation of acid-base balance in man. IV. The nature of the renal compensations in ammonium chloride acidosis. J Clin Invest 28:423–439CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Schlatter E, Schafer JA (1987) Electrophysiological studies in principal cells of rat cortical collecting tubules: ADH increases the apical membrane Na+-conductance. Pflügers Arch 409:81–92CrossRefPubMedGoogle Scholar
  37. 37.
    Schnermann J, Steipe B, Briggs JP (1987) In situ studies of distal convoluted tubule in rat. II. K secretion. Am J Physiol 252:F970–F976PubMedGoogle Scholar
  38. 38.
    Schuster VL, Stokes JB (1987) Chloride transport by the cortical and outer medullary collecting duct. Am J Physiol 253:F203–F212PubMedGoogle Scholar
  39. 39.
    Stanton BA, Giebisch G (1982) Effects of pH on potassium transport by renal distal tubule. Am J Physiol 242:F544–F551PubMedGoogle Scholar
  40. 40.
    Stanton BA, Biemesderfer D, Wade JB, Giebisch G (1981) Structural and functional study of the rat distal nephron: effects of potassium adaption and depletion. Kidney Int 19:36–48CrossRefPubMedGoogle Scholar
  41. 41.
    Swan RC, Pitts RF, Madisso H (1955) Neutralization of infused acid by nephrectomized dogs. J Clin Invest 34:205–212CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Toussaint C, Vereerstraeten P (1962) Effects of blood pH changes on potassium excretion in the dog. Am J Physiol 202: 768–772PubMedGoogle Scholar
  43. 43.
    Wade JB, O'Neil RG, Pryor JL, Boulpaep EL (1979) Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J Cell Biol 81:439–445CrossRefPubMedGoogle Scholar
  44. 44.
    Wright FS, Strieder N, Fowler NB, Giebisch G (1971) Potassium secretion by distal tubule after potassium adaptation. Am J Physiol 221:437–448PubMedGoogle Scholar
  45. 45.
    Young DB (1987) Quantitative analysis of steady-state potassium regulation. In: Giebisch G (ed) Current topics in membranes and transport, vol 28: Potassium transport: physiology and pathophysiology, chapt 12. Academic Press, New York London, pp 269–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • F. -X. Beck
    • 1
  • M. Schramm
    • 1
  • A. Dörge
    • 1
  • R. Rick
    • 2
  • K. Thurau
    • 1
  1. 1.Physiologisches Institut der Universität MünchenMünchen 2Federal Republic of Germany
  2. 2.Medical School, Department of Physiology and BiophysicsUniversity of Alabama in BirminghamBirminghamUSA

Personalised recommendations