Basic Research in Cardiology

, Volume 74, Issue 6, pp 639–648 | Cite as

Pulsus alternans in regionally hypoxic ventricles of open-chest dogs: Regional mechanical alternation of potentiation and attenuation of the inotropic state

  • B. Crozatier
  • D. Caillet
  • P. Jouannot
  • P. Y. Hatt
  • P. Gastineau
Original Contributions


Sustained mechanical alternation appeared after a spontaneous premature ventricular contraction in 6 open-chest dogs during the perfusion of the left circumflex coronary artery by Krebs-Henseleit solution equilibrated with 5% CO2 and 95% N2. The animals were instrumented with a catheter in the left ventricle and ultrasonic crystals in hypoxic and control segments. Left ventricular systolic pressure was significantly higher in the strong than in the weak beats with no significant difference of end-diastolic lengths in hypoxic and control segments. In hypoxic segments, systolic shortening was significantly larger in strong beats (11.9±1.9%) as compared with weak beats (5.1±1.6%) and with control beats preceding the premature ventricular contraction (9.7±1.6%) but the postextrasystolic beat was larger (17.9±1.3%). There was no significant change of systolic shortening in control segments during mechanical alternation which appears thus as a regional phenomenon which cannot be explained by the Starling mechanism: instead, alternation is attributed to a change of excitation-contraction coupling after a premature contraction with alternation of potentiation and attenuation of the inotropic state.


Premature Ventricular Contraction Ventricular Systolic Pressure Starken Control Segment Left Circumflex Coronary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Pulsus alternans bei Hunden mit regionaler Myokardhypoxie: Örtliches Alternieren von Potenzierung und Abschwächung des inotropen Status


Bei 6 Hunden mit offenem Thorax trat unter Perfusion des R. circumflexus der linken Koronararterie mit sauerstoff-freier Krebs-Henseleit-Lösung (äquilibriert mit 5% CO2, 95% N2) ein langdauernder mechanischer Alternans auf. Bei den Tieren wurde ein Katheter im linken Ventrikel sowie Ultraschallkristalle in den hypoxischen und Kontroll-Segmenten plaziert. Der systolische Druck des linken Ventrikels war bei den starken Schlägen signifikant höher als bei den schwachen, während keine signifikante Differenz bezüglich der Länge in hypoxischen und Kontrollsegmenten bestand. In hypoxischen Segmenten war die systolische Verkürzung bei den starken Schlägen deutlich größer (11,9±1,9%) als bei den schwachen (5,1±1,6%). Jedoch war der postextrasystolische Schlag stärker (17,9±1,3%). In den Kontrollsegmenten war keine signifikante Änderung der systolischen Verkürzung während des mechanischen Alternierens zu verzeichnen. Letzteres ist daher offenbar ein regionales Phänomen, welches nicht durch den Starling-Mechanismus erklärt werden kann. Das Alternieren wird vielmehr auf eine Änderung der elektromechanischen Kopplungsbedingungen nach einer Extrasystole bezogen mit abwechselnder Potenzierung und Abschwächung des inotropen Status.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, H. S., U. Y. Ryo, W. F. Gassner, E. J. Kass, J. Cavaluzzi, J. L. Gilbert, C. McBrooks: Factors affecting pulsus alternans in the rapidly driven heart and papillary muscle. Amer. J. Physiol.213, 1095–1101 (1967).PubMedGoogle Scholar
  2. 2.
    Friedberg, C. K.: Diseases of the heart (3rd edition), pp. 304–305 (Philadelphia 1966).Google Scholar
  3. 3.
    Frist, W. H., I. Palacios, W. J. Powell: Effect of hypoxia on myocardial relaxation in isometric cat papillary muscle. J. Clin. Invest.61, 1218–1224 (1978).PubMedGoogle Scholar
  4. 4.
    Gilbert, J. L., M. J. Tanse, H. H. Lu, J. O. Pinkston, C. McBrooks: Production and abolition of alternation in mechanical action of the ventricle. Amer. J. Physiol.209, 945–950 (1965).PubMedGoogle Scholar
  5. 5.
    Green, H. D.: Nature of ventricular alternation resulting from reduced coronary blood flow. Amer. J. Physiol.114, 407–413 (1935).Google Scholar
  6. 6.
    Greenspan, K., R. E. Edmands, C. Fisch: The relation of contractile enhancement to action potential change in canine myocardium. Circul. Res.20, 311–320, (1969).Google Scholar
  7. 8.
    Gunderoth, W. G., B. C. Morgan, G. A. McGough, A. M. Scher: Alternate deletion and potentiation as the cause of pulsus alternans. Amer. Heart J78, 669–681 (1969).CrossRefPubMedGoogle Scholar
  8. 8.
    Lendrum, B., H. Feinberg, E. Boyd, L. N. Katz: Rhythm effects on contractility of the beating isovolumic left ventricle. Amer. J. Physiol.199, 1115–1120 (1960).PubMedGoogle Scholar
  9. 9.
    Mahler, F., C. Yoran, J. Ross jr.: Inotropic effect of tachycardia and poststimulation potentiation in the conscious dog. Amer. J. Physiol.227, 569–575 (1974).PubMedGoogle Scholar
  10. 10.
    Mahler, F., J. W. Covell, J. Ross, jr.: Systolic pressure-diameter relations in the normal conscious dog. Cardiovasc. Res.9, 447–455 (1975).PubMedGoogle Scholar
  11. 11.
    Mitchell, J. H., S. J. Sarnoff, E. H. Sonnenblick: The dynamics of pulsus alternans: alternating end-diastolic fiber length as a causative factor. J. Clin. Invest.42, 55–63 (1963).Google Scholar
  12. 12.
    Murao, S., M. Kakihana, Y. Sugishita: Cardiac function under myocardial ischemia. Comparison between the coronary perfusion with non oxygenated Tyrodes solution and coronary occlusion. Japan. Heart J.18, 366–378 (1977).Google Scholar
  13. 13.
    Nayler, W. G., P. G. C. Robertson: Mechanical alternans and the staircase phenomenon in dog papillary muscle. Amer. Heart J.70, 494–500 (1965).CrossRefPubMedGoogle Scholar
  14. 14.
    Noble, R. J., D. O. Nutter: The demonstration of alternating contractile state in pulsus alternans. J. Clin. Invest.49, 1166–1177 (1970).PubMedGoogle Scholar
  15. 15.
    Parmley, W. W., H. Tomoda, S. Fujimura, J. M. Matloff: Relation between pulsus alternans and transcient occlusion of the left anterior descending coronary artery. Cardiovasc. Res.6, 709–715 (1972).PubMedGoogle Scholar
  16. 16.
    Tatooles, C. J., W. C. Randall: Local ventricular bulging after acute coronary occlusion. Amer. J. Physiol.201, 451–456 (1961).PubMedGoogle Scholar
  17. 17.
    Theroux, P., D. Franklin, J. Ross, jr., W. S. Kemper: Regional myocardial function during acute coronary artery occlusion and its modification by pharmacological agents in the dog. Circul. Res.35, 896–908 (1974).Google Scholar
  18. 18.
    Tyberg, J. V., L. A. Yeatman, W. W. Parmley, C. W. Urschel, E. H. Sonnenblick: Effects of hypoxia on mechanics of cardiac contraction. Amer. J. Physiol.218, 1780–1788 (1970).PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1979

Authors and Affiliations

  • B. Crozatier
    • 1
  • D. Caillet
    • 1
  • P. Jouannot
    • 1
  • P. Y. Hatt
    • 1
  • P. Gastineau
    • 1
  1. 1.Hôpital Léon BernardM.D., I.N.S.E.R.M. U2Limeil-BrévannesFrance

Personalised recommendations