Skip to main content
Log in

A modified regionally ischemic porcine heart preparation with eligible residual blood flows

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The left anterior descending coronary artery was occluded in each of 28 thoracotomized pigs around an intracoronary catheter for periods between 30 and 240 min followed by 90 min of reperfusion. The catheter was connected via an external pump with another arterial catheter. The pump rate was set to deliver 1.5 ml (group I), 3 ml (group II), or 6 ml blood/min (group III) respectively during ischemia. The distribution of the residual blood flow during ischemia was determined in group II with non-radioactive microspheres. We delineated the risk region by a fluorescent dye and the infarcted tissue with a tetrazolium stain. The higher residual blood flow in groups II and III reduced the incidence of ventricular fibrillation during ischemia from 70% (group I) to 28%, suggesting that the amount of residual blood flow is one important determinant for this rhythm disturbance. The subendocardial-subepicardial blood flow ratio in the risk region of the anterior wall was 41%. Infarcts started to develop after 30 min of ischemia (groups I and II). In all groups necrosis progressed most rapidly within the first 90 min of ischemia indicating that besides the beneficial effect of a high residual blood flow only early reperfusion is able to salvage a substantial amount of jeopardized myocardium. Compared to conventional regionally ischemic canine and porcine heart preparations the described model offers the following advantages:

Accurate delineation of the risk region, eligible residual blood flow, reduction of ventricular fibrillation with higher residual blood flows, and the possibility to selectively test the metabolic influence of drugs on ischemic injury while avoiding systemic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lowe JE, Reimer KA, Jennings RB (1978) Experimental infarct size as a function of the amount of myocardium at risk. Am J Pathol 90:363–379

    PubMed  Google Scholar 

  2. Müller KD, Klein H, Schaper W (1980) Changes in myocardial oxygen consumption 45 minutes after experimental coronary occlusion do not alter infarct size. Cardiovasc Res 14:710–718

    PubMed  Google Scholar 

  3. Eckstein RW (1954) Coronary interarterial anastomoses in young pigs and mongrel dogs. Circ Res 2:460–465

    PubMed  Google Scholar 

  4. Schaper W (1971) The collateral circulation of the heart. In: Black DAK (ed) Clinical studies. North Holland Publishing, Amsterdam

    Google Scholar 

  5. White FC, Bloor CM (1981) Coronary collateral circulation in the pig: correlation of collateral flow with coronary bed size. Basic Res Cardiol 76:189–196

    PubMed  Google Scholar 

  6. Rowe GG (1979) An angiographic and clinical study of coronary collateral circulation. Basic Res Cardiol 73:131–141

    Google Scholar 

  7. Klein HH, Schubothe M, Nebendahl K, Kreuzer H (1984) The effect of two different diltiazem treatments on infarct size in ischemic, reperfused porcine hearts. Circulation 69:1000–1005

    PubMed  Google Scholar 

  8. Bretschneider HJ, Hellige G (1976) Pathophysiologie der Ventrikelkontraktion-Kontraktilität, Inotropie, Suffizienzgrad und Arbeitsökonomie des Herzens. Verh Dtsch Ges Kreislaufforsch 41:14–30

    Google Scholar 

  9. Nachlas MU, Shnitka TK (1963) Macroscopic identification of early myocardial infarcts by alteration in dehydrogenase activity. Am J Pathol 42:379–405

    PubMed  Google Scholar 

  10. Winkler B (1979) The tracer microsphere method. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier, North-Holland Biomedical Press, Amsterdam, pp 13–42

    Google Scholar 

  11. Vetterlein F, Schmidt G (1980) Effect of isoprenaline on functional capillary density in the subendocardial and subepicardial layer of the rat myocardium. Basic Res Cardiol 75:526–536

    PubMed  Google Scholar 

  12. Gottwik MG, Kirk ES, Hoffstein S, Weglicki WB (1975) Effect of collateral flow on epicardial and endocardial lysosomal hydrolases in acute myocardial ischemia. J Clin Invest 56:914–923

    PubMed  Google Scholar 

  13. Teien AN, Lie M, Abilddgaard U (1976) Assay of heparin in plasma using a chromogenic substrate for activated factor X. Thromb Res 8:413–416

    PubMed  Google Scholar 

  14. Lipinski B, Worowski K (1968) Detection of soluble fibrin monomer complexes by means of protamine-sulfate-test. Thrombos Diathes Haemorrh 20:44–49

    Google Scholar 

  15. Siegel S (1956) Non parametric statistics for the behavioral sciences McGraw-Hill Book Company Inc, New York

    Google Scholar 

  16. Clauss G, Ebner H (1982) Statistik, Band 1, Harri Deutsch, Frankfurt, F.R.G.

    Google Scholar 

  17. Sjöquist P-O, Duker G, Almgren O (1984) Distribution of the collateral blood flow at the lateral border of the ischemic myocardium after acute coronary occlusion in the pig and the dog. Basic Res Cardiol 79:164–175

    PubMed  Google Scholar 

  18. Schaper W, Frenzel H, Hort W, Winkler B (1979) Experimental coronary artery occlusion II. Spatial and temporal evolution of infarcts in dog heart. Basic Res Cardiol 74:233–239

    PubMed  Google Scholar 

  19. Klein HH, Puschmann S, Schaper J, Schaper W (1981) The mechanism of the tetrazolium reaction in identifying experimental myocardial infarction. Virchows Arch (Pathol Anat) 393:287–297

    Article  Google Scholar 

  20. Fischbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC, Corday E, Ganz W (1981) Early phase acute myocardial infarct size quantification: Validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 101:593–600

    Article  PubMed  Google Scholar 

  21. DeBoer LWV, Strauss HW, Kloner RA, Rude RE, Davis RF, Maroko PE, Braunwald E (1980) Autoradiographic method for measuring the ischemic myocardium at risk: Effects of verapamil on infarct size after experimental coronary artery occlusion. Proc. Natl Acad Sci USA 77:6119–6123

    PubMed  Google Scholar 

  22. Klein HH, Schubothe M, Nebendahl K, Kreuzer H (1984) Temporal and spatial development of infarcts in porcine hearts. Basic Res Cardiol 79:440–447

    PubMed  Google Scholar 

  23. Klein HH, Nebendahl K, Schubothe M, Kreuzer H (1985) Intracoronary hyperosmotic mannitol during reperfusion does not effect the infarct size in ischemic, reperfused porcine hearts. Basic Res Cardiol 80:251–259

    PubMed  Google Scholar 

  24. Garza DA, White FC, Hall RE, Bloor CM (1974) Effect of coronary collateral development on ventricular fibrillation threshold. Basic Res Cardiol 69:371–378

    PubMed  Google Scholar 

  25. Verdouw PD, Remme WJ, Hugenholtz PG (1977) Cardiovascular and antiarrhythmic effects of aprindine (AC 1802) during partial occlusion of a coronary artery in the pig. Cardiovasc Res 11:317–323

    PubMed  Google Scholar 

  26. Hirche HJ, Franz CHR, Bös L, Bissy R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12:579–593

    Article  PubMed  Google Scholar 

  27. Bache RJ, Schwartz JS (1982) Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation 65:928–935

    PubMed  Google Scholar 

  28. Schaper W (1979) Residual perfusion of acutely ischemic heart muscle. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier, North-Holland Biomedical Press, Amsterdam, pp 345–378

    Google Scholar 

  29. Gottwik M, Zimmer P, Wüsten B, Hoffmann M, Winkler B, Schaper W (1981) Experimental myocardial infarction in a closed-chest canine model. Observations of temporal and spatial evolution over 24 hours. Basic Res Cardiol 76:670–680

    PubMed  Google Scholar 

  30. Gottwik MG, Puschmann S, Wüsten B, Nienaber C, Müller K-D, Hoffmann M, Schaper W (1984) Myocardial protection by collateral vessels during experimental coronary ligation: A prospective study in a canine two-infarction model. Basic Res Cardiol 79:337–343

    PubMed  Google Scholar 

  31. Rentrop KP (1985) Thrombolytic therapy in patients with acute myocardial infarction. Circulation 71:627–631

    Google Scholar 

  32. Schwartz H, Leiboff RH, Bren GB, Wasserman AG, Katz RJ, Varghese PJ, Sokol AB, Ross AM (1984) Temporal evolution of the human coronary collateral circulation after myocardial infarction. J Amer Coll Cardiol 4:1088–1093

    Google Scholar 

  33. Stadius ML, Maynard C, Fritz JK, Davis K, Ritchie JL, Sheehan F, Kennedy JW (1985) Coronary anatomy and left ventricular function in the first 12 hours of acute myocardial infarction. The Western Washington randomized intracoronary streptokinase trial. Circulation 72:292–301

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a grant from SFB 89, Kardiologie Göttingen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, H.H., Nebendahl, K., Lindert, S. et al. A modified regionally ischemic porcine heart preparation with eligible residual blood flows. Basic Res Cardiol 81, 384–393 (1986). https://doi.org/10.1007/BF01907459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907459

Key words

Navigation