Advertisement

Basic Research in Cardiology

, Volume 78, Issue 3, pp 289–297 | Cite as

Production of cardiac lesions with tyramine in intact rats

Studies on serum and myocardial creatinkinase activity changes and ultrastructural aspects
  • A. Genovese
  • M. Chiariello
  • W. De Alfieri
  • S. Latte
  • M. Condorelli
Original Contributions
  • 18 Downloads

Summary

The authors performed an experimental study on myocardial injury induced by tyramine. For this purpose Sprague-Dawley male rats received multiple dose levels of tyramine hydrochloride. The drug exerts its sympathomimetic effects chiefly by the release of catecholamines stored in nerve endings. Myocardial lesions were documented on the basis of serum creatinkinase isoenzyme (MB-CK) changes and creatinkinase activity (CK) depletion in homogenate of cardiac tissue in animals sacrificed at different time intervals from tyramine injection.

Accordingly, MB-CK values expressed as IU/l×103 (mean±standard error of the mean, [SEM]) assessed at the 2nd and 4th hours from 50, 100, or 150 mg i.p. tyramine/100 g body weight were 0.99±0.23 or 0.85±0.30 (50 mg), 1.75±0.24 or 8.50±0.41 (100 mg), 2.07±0.60 or 8.40±0.39 (150 mg), respectively. Values in control animals were 0.51±0.07. As shown, the most marked increase in MB-CK levels is obtained at the 4th hour in 100 mg/100 g b.w. tyramine-treated rats. Thus MB-CK values were also explored at the 6th (7.43±0.15) and 12th (2.24±0.23) hours from drug administration. A significant (p<0.001) rise in serum MB-CK levels can be observed reaching the peak at the 4th hour after tyramine (100 mg/100 g b.w.).

Moreover, the CK myocardial content (IU/mg of protein) in the same tyramine-animals at the 2nd or 4th hours from 50, 100 or 150 mg of the i.p. drug/100 g b.w. were (mean ± SEM) 11.10±0.05 or 9.26±0.57 (50 mg), 9.42±0.81 or 8.57±0.22 (100 mg), 8.92±2.17 or 6.70±0.04 (150 mg), respectively. At the 6th or 12th hours from i.p. tyramine (100 mg/100 g b.w.) CK values were 9.60±0.48 or 9.99±0.56. Control values showed 13.50±0.68. A significant (p<0.001) decrease in CK myocardial content in the rats treated by the drug was achieved with the most marked CK depletion 4 hours after receiving tyramine (100 mg/100 g b.w.).

On these bases, the ultrastructural changes were investigated in tyramine-treated rats (100 mg/100 g b.w.) at the 4th hours from the drug administration. The finding included mitochondrial and myofibrillar damage.

In conclusion, this experimental model accounts for the possibility to induce myocardial damagein vivo in tyramine-treated rats.

Key words

tyramine myocardial lesions myocardial ultrastructure creatinkinase isoenzyme creatinkinase activity Sprague-Dawley rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhagat, B., J. Jr. Gilliam: Factors influencing the depletion of cardiac norepinephrine by tyramine. J. Pharmacol. Exp. Ther.153, 191–196 (1966).Google Scholar
  2. 2.
    Borda, L., R. Shuchleib, P. D. Henry: Effect of potassium on isolated canine coronary arteries. Modulation of adrenergic responsiveness and release of norepinephrine. Circulat. Res.41, 778–786 (1977).PubMedGoogle Scholar
  3. 3.
    Burn, J. H., M. J. Rand: The action of sympathomimetic amines in animals treated with reserpine. J. Physiol. (London)144, 314–336 (1958).Google Scholar
  4. 4.
    Carlsson, A.: Pharmacological depletion of catecholamines stores. Pharmacol. Rev.18, 541–549 (1966).PubMedGoogle Scholar
  5. 5.
    Chiariello, M., G. Brevetti, G. De Rosa, R. Acunzo, F. Petito, F. Rengo, M. Condorelli: Protective effects of simultaneous alpha and beta adrenergic receptor blockade on myocardial cell necrosis after coronary arterial occlusion in rats. Amer. J. Cardiol.46, 249–254 (1980).CrossRefPubMedGoogle Scholar
  6. 6.
    Duff, G. L., J. D. Hamilton, D. Magner: Experimental production of arteriolonecrosis and medionecrosis of arteries by means of tyramine injections. Proc. Soc. Exp. Biol. (N.Y.)41, 295–297 (1939).Google Scholar
  7. 7.
    Furchgott, R., P. S. Garcia: Effects of inhibition of norepinephrine, tyramine and other drugs on guinea-pig left atrium. J. Pharmacol. Exp. Ther.163, 98–122 (1968).PubMedGoogle Scholar
  8. 8.
    Genovese, A., M. Chiariello, G. Ferro, A. A. Cacciapuoti, M. Condorelli: Myocardial hypertrophy in the rat. Correlation between two experimental models. Jpn. Heart J.21, 511–518 (1980a).PubMedGoogle Scholar
  9. 9.
    Genovese, A., M. Chiariello, S. Latte, W. De Alfieri, A. A. Cacciapuoti, M. Condorelli: Effects of antiplatelet and calcium antagonist drug on infarct size in rats. Acta Cardiol.35, 419–427 (1980b).PubMedGoogle Scholar
  10. 10.
    Gornall, A. G., C. J. Bardowill, M. M. David: Determination of serum proteins by means of the biuret reaction. J. Biol. Chem.177, 751–756 (1949).Google Scholar
  11. 11.
    Haft, J. I., P. Krantz, F. Albert, K. Fani: Intravascular platelet aggregation in the heart induced by norepinephrine: microscopic studies. Circulation46, 698–708 (1972).PubMedGoogle Scholar
  12. 12.
    Jamieson, D. D., K. M. Taylor: Non specific stimulant activity of tyramine on isolated intestinal preparations. Agent Actions9, 422–427 (1979).Google Scholar
  13. 13.
    Janke, J., W. Jaedicke, A. Fleckenstein: Prevention of isoproterenol-induced cardiac necrosis by reduction of transmembrane Ca influx inhibitors of excitation-contraction coupling. Plüg. Arch. ges. Physiol.R8, 319–333 (1970).Google Scholar
  14. 14.
    Kjekshus, J. K., B. E. Sobel: Depressed myocardial creatine phosphokinase activity following experimental myocardial infarction in rabbit. Circulat. Res.27, 403–414 (1970).PubMedGoogle Scholar
  15. 15.
    MacLean, D., M. C. Fishebein, E. Braunwald, P. R. Maroko: Long-term preservation of ischemic myocardium after experimental coronary occlusion. J. Clin. Invest.61, 541–551 (1978).PubMedGoogle Scholar
  16. 16.
    Maling, H. M., B. Highman, E. C. Thompson: Some similar effects after large doses of catecholamines and myocardial infarction in dogs. Amer. J. Cardiol.5, 628–633 (1960).PubMedGoogle Scholar
  17. 17.
    Moss, A. J., I. Vittands, E. A. Schenk: Cardiovascular effects of sustained norepinephrine infusion. I. Hemodynamics. Circulat. Res.18, 596–604 (1966).PubMedGoogle Scholar
  18. 18.
    Muscholl, E.: Indirectly acting sympathomimetic amines. Pharmacol. Rev.18, 551–559 (1966).PubMedGoogle Scholar
  19. 19.
    Rona, G., C. I. Chappel, T. Balazs, R. Gaudry: An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch. Path.67, 443–455 (1959).Google Scholar
  20. 20.
    Rosemblum, I., A. Wohl, A. A. Atein: Studies in sympathomimetic amines. Toxicol. Appl. Pharmacol.7, 1–8 (1965).CrossRefGoogle Scholar
  21. 21.
    Schenk, E. A., A. J. Moss: Cardiovascular effects of sustained norepinephrine infusion. II. Morphology. Circulat. Res.18, 605–615 (1966).PubMedGoogle Scholar
  22. 22.
    Smith, A. D.: Mechanisms involved in the release of noradrenaline from sympathetic nerves. Brit. Med. Bull.29, 123–129 (1973).Google Scholar
  23. 23.
    Snedecor, G. W., W. G. Cochran: Statistical methods. Iowa State University Press. Iowa City. (1967).Google Scholar
  24. 24.
    Sobel, B. E., R. Roberts, B. K. Larson: Estimation of infarct size from serum MB creatinephosphokinase activity: applications and limitations. Amer. J. Cardiol.37, 474–485 (1976).CrossRefPubMedGoogle Scholar
  25. 25.
    Somlyo, A. P., A. V. Somlyo: Vascular smooth muscle. II. Pharmacology of normal and hypertensive vessels. Pharmacol. Rev.22, 276–278 (1970).Google Scholar
  26. 26.
    Szakacs, J. E., A. Cannon: L-norepinephrine myocarditis. Amer. J. Clin. Path.30, 425–434 (1958).Google Scholar
  27. 27.
    Szakacs, J. E., B. Mehlman: Pathologic changes induced by l-norepinephrine. Quantitative aspects. Amer. J. Cardiol.5, 619–627 (1960).CrossRefPubMedGoogle Scholar
  28. 28.
    Toda, N., S. Hayashi, K. Hattori: Analysis of the effect of tyramine and norepinephrine in isolated canine cerebral and mesenteric arteries. J. Pharmacol. Exp. Ther.205, 382–391 (1978).PubMedGoogle Scholar
  29. 29.
    Trendelenburg, U.: Supersensitivity and subsensitivity to sympathomimetic amines. Pharmacol. Rev.15, 225–276 (1963).PubMedGoogle Scholar
  30. 30.
    Waldestrom, A. P., A. C. Hjalmarson, L. Thornell: a possible role of noradrenaline in the development of myocardial infarction. Amer. Heart J.95, 43–51 (1978).CrossRefPubMedGoogle Scholar
  31. 31.
    Weiner, N., P. R. Draskoczy, W. R. Burac: The ability of tyramine to liberate catecholaminesin vivo. J. Pharmacol. Exp. Ther.137, 47–55 (1962).PubMedGoogle Scholar
  32. 32.
    Wexler, B. C., G. W. Kittinger: Myocardial necrosis in the rat: serum enzymes, adrenal steroid and histopathological alterations. Circulat. Res.13, 159–171 (1963).Google Scholar
  33. 33.
    Wurzburg, U., N. Henrich, B. H. Orth, H. Lang: Quantitative determination of creatinkinase isoenzyme catalytic concentrations in serum using immunological methods. J. Clin. Chem. Clin. Biochem.15, 131–137 (1977).PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1983

Authors and Affiliations

  • A. Genovese
    • 1
  • M. Chiariello
    • 1
  • W. De Alfieri
    • 1
  • S. Latte
    • 1
  • M. Condorelli
    • 1
  1. 1.Institute of Internal Medicine I, IInd School of MedicineUniversity of NaplesNaplesItaly

Personalised recommendations