Skip to main content
Log in

Thyroxine induces transition of red towards white muscle in cultured heart cells

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Thyroid hormones (TH) have previously been shown to alter the force and velocity of cardiac muscle contractions. To investigate the mechanism responsible for these alterations, excess amounts of thyroxine (T4, 1μM) were applied on rat heart cells grown in cell culture. We found the following biochemical alterations: a) 40% decrease in the myoglobin content within 2 days; b) 25% increase in the rate of Ca-uptake into sacroplasmic reticulum (SR) in myocytes following chemical skinning; and c) a two-fold increase in Na−K-ATPase activity measured by86Rb-uptake. These changes support our hypothesis that TH induce the transition of slow-twitch (“red”) muscles towards the fast-twitch (“white”) muscle type. This may explain the changes in contractile activity known to occur under TH influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binah O, Rubinstein E, Gilat E (1987) Effect of thyroid hormone on the action potential and membrane currents of guinea pig ventricular myocytes. Pflügers Arch 409:214–216

    Google Scholar 

  2. Briggs FN, Poland JL, Solaro RJ (1977) Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles. J Physiol (Lond) 266:587–594

    Google Scholar 

  3. Brik H, Gamliel A, Shainberg A (1989) Characterization of sarcoplasmic reticulum in skinned muscle cultures. Biochim Biophys Acta 980:273–280

    PubMed  Google Scholar 

  4. Buccino RA, Spann JF Jr, Pool PE, Sonnenblick EH, Braunwald E (1967) Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J Clin Invest 46:1669–1682

    PubMed  Google Scholar 

  5. Capelli V, Moggio R, Polla B, Bottinelli R, Pogesi C, Reggiani C (1988) The dual effect of thyroid hormones on contractile properties of rat myocardium. Pflügers Arch 411:620–627

    Google Scholar 

  6. Caroni P, Carafoli E (1981) The Ca2+ pumping ATPase of heart sarcolemma characterization, calmodulin dependence, and partial purification. J Biol Chem 256:3263–3270

    PubMed  Google Scholar 

  7. Carter WJ, Benjamin WS, Faas FH (1982) Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by14C-tyrosine infusion. Biochem J 204:69–74

    PubMed  Google Scholar 

  8. Chuch SH, Mullancy JM, Ghosh TK, Zachaky AL, Gill D (1987) GTP- and inositol 1,4,5-triphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines. J Biol Chem 262:13857–13864

    PubMed  Google Scholar 

  9. Conway G, Heazlitt RA, Fowler NO, Gabel M, Green S (1976) The effect of hyperthyroidism on the sarcoplasmic reticulum and myosin ATPase of dog heart. J Mol Cell Cardiol 8:39–51

    PubMed  Google Scholar 

  10. Curfman GD, Crowley TJ, Smith TW (1979) Thyroid-induced alterations in myocardial sodium and potassium-activated adenosine triphosphatase, monovalent cation active transport, and cardiac glycoside binding. J Clin Invest 59:586–590

    Google Scholar 

  11. Davis PJ, Blas SD (1981) In vitro stimulation of human red blood cell Ca2+-ATPase by thyroid hormone. Biochem Biophys Res Comm 99:1073–1080

    PubMed  Google Scholar 

  12. Djaldetti M, Gilgal R, Shainberg A, Klein B, Zahavi I (1988) EM observations on the effect of anthracycline drugs in cultured newborn rat cardiomyocytes. Basic Res Cardiol 83:672–677

    PubMed  Google Scholar 

  13. Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108

    PubMed  Google Scholar 

  14. Endo M, Iioni M (1980) Specific perforation of muscle cell membranes with preserved SR function by saponin treatment. J Musel Res and Cell Motility 1:89–100

    Google Scholar 

  15. Erdmann E, Brown L, Werdan K, Berger H (1987) Multiple forms of the cardiac glycoside receptor with different affinities for cardiac glycosides. In: Beamish RE, Panagia V, Dhalla NS (eds) Pharmacological aspects of heart disease: M Nijhoff Publishing, Boston, pp 261–271

    Google Scholar 

  16. Everts ME, Clausen T (1986) Effects of thyroid hormones on calcium contents and45Ca-exchange in rat skeletal muscle. Am J Physiol 251:E258-E265

    PubMed  Google Scholar 

  17. Fiehn W, Peter JB (1971) Properties of the fragmented sarcoplasmic reticulum from fast twitch and slow twitch muscles. J Clin Invest 50:570–573

    PubMed  Google Scholar 

  18. Flink IL, Rader JH, Morkin E (1979) Thyroid hormone stimulates synthesis of a cardiac myosin isozyme. Comparison of the two-dimensional electrophoretic patterns of the cyanogen bromide peptides of cardiac myosin heavy chains from euthyroid and thyrotoxic rabbits. J Biol Chem 254:3105–3110

    PubMed  Google Scholar 

  19. Gold HK, Spann JF, Braunwald E (1970) Effect of alterations in the thyroid state on the intrinsic contractile properties of isolated rat skeletal muscle. J Clin Invest 49:849–854

    PubMed  Google Scholar 

  20. Goodkind MJ, Damback GE, Thyrum PT, Luchi RJ (1974) Effect of thyroxine on ventricular myocardial contractility and ATPase activity in guinea pigs. Am J Physiol 226:66–72

    PubMed  Google Scholar 

  21. Grossman W, Rubin NL, Johnson CW (1971) The enhanced myocardial contractility of thyrotoxicosis. Ann Intern Med 74:869–874

    PubMed  Google Scholar 

  22. Hasselbach W (1964) Relaxing factor and the relaxation of muscle. Prog Biophys Mol Biol 14:167–222

    Google Scholar 

  23. Hirata M, Koga T (1982) ATP-dependent Ca2+ accumulation in intracellular membranes of guinea pig macrophages after saponin treatment. Biochem Biophys Res Commun 104:1544–1549

    PubMed  Google Scholar 

  24. Hoh JFY, McGrath PA, Hale PT (1978) Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroid replacement. J Mol Cell Cardiol 10:1053–1076

    PubMed  Google Scholar 

  25. Ianuzzo CD, Patel P, Chen V, O'Brien P (1980) A possible thyroidal trophic influence on fast and slow skeletal muscle myosin. In: Pette D (ed) Plasticity of Muscle: Walter de Gruyter, Berlin New York, pp 593–605

    Google Scholar 

  26. Kessler-Ieekson G (1988) Effect of triiodothyronine on cultured neonatal rat heart cells: beating rate, myosin subunits and CK isozymes. J Molec Cell Cardiol 20:649–655

    Google Scholar 

  27. Kim HD, Witmann FAJ, Fitts RH (1981) A comparison of sarcoplasmic reticulum function in fast and slow skeletal muscle using crude homogenate and isolated vesicles. Life Sci 28:2223–2229

    PubMed  Google Scholar 

  28. Kim D, Smith TW (1984) Effects of thyroid hormone on sodium pump sites, sodium content and contractile response to cardiac glycosides in cultured chick ventricular cells. J Clin Invest 74:1481–1488

    PubMed  Google Scholar 

  29. Kim D, Smith TW (1985) Effects of thyroid hormone on calcium handling in cultured chick ventricular cells. J Physiol (Lond.) 364:131–149

    Google Scholar 

  30. Kim D, Smith TW, Marsh JD (1987) Effect of thyroid hormone on slow calcium channel function in cultured chick ventricular cells. J Clin Invest 80:88–94

    PubMed  Google Scholar 

  31. Kjeldsen K, Everts EM, Clausen T (1986) The effects of thyroid hormones in3H-ouabain binding site concentration, Na, K-contents and86-Rb-efflux in rat skeletal muscle. Pflügers Arch 406:529–535

    Google Scholar 

  32. Limas CJ (1986) Calcium transport by the cardiac sarcoplasmic reticulum in different functional states. In: Rupp H (ed) The Regulation of Heart Function Basic Concepts and Clinical Applications. Thieme, New York, pp 145–148

    Google Scholar 

  33. Ling E, O'Brien PJ, Slaerno T, Ianuzzo CD (1988) Effects of different thyroid treatments on the biochemical characteristics of rabbit myocardium. Can J Cardiol 4:301–306

    PubMed  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  35. Martonosi A, Roufa D, Boland R, Keyes E, Tillack TW (1977) Development of sarcoplasmic reticulum in cultured chicken muscle. J Biol Chem 252:318–332

    PubMed  Google Scholar 

  36. Morkin C, Flinik IL, Goldman S (1983) Biochemical and physiological effects of thyroid hormone on cardiac performance. Prog Cardiovasc Dis 25:435–464

    PubMed  Google Scholar 

  37. Morrison GR (1965) Fluorometric microdetermination of heme protein. Anal Chem 37:1124–1127

    PubMed  Google Scholar 

  38. Nwoye L, Mommaerts WFHM, Simpson DR, Seraydarian K, Marusich M (1982) Evidence for a direct action of thyroid hormone in specifying muscle properties. Am J Physiol 242:R401-R408

    PubMed  Google Scholar 

  39. Oppenheimer JH (1979) Thyroid hormone action at the cellular level. Science 203:971–979

    PubMed  Google Scholar 

  40. Philipson KD, Edelman IS (1977) Thyroid hormone control of Na+−K+-ATPase and K+-dependent phosphatase in rat heart. Am J Physiol 232:C196-C201

    PubMed  Google Scholar 

  41. Rodgers RS, Black S, Katz S, McNeil JH (1986) Thyroidectomy of SHR: effects on ventricular relaxation and on SR calcium uptake activity. Am J Physiol 250:H861-H865

    PubMed  Google Scholar 

  42. Rudinger A, Mylotte KM, Davis PJ, Blas SD (1984) Rabbit myocardial membrane Ca2+-adenosine triphosphatase activity: Stimulation in vitro by thyroid hormone. Arch Biochem Biophys 229:379–385

    PubMed  Google Scholar 

  43. Rupp H, Jacob R (1986) Myocardial transitions between fast and slow-type muscles as monitored by the population of myosin isoenzymes. In: Rupp H (ed) The Regulation of Heart Function Basic Concepts and Clinical Applications. Thieme, New York, pp 271–291

    Google Scholar 

  44. Seeman P (1967) Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin. J Cell Biol 32:55–70

    PubMed  Google Scholar 

  45. Shainberg A, Yagil G, Yaffe D (1971) Alteration of enzymatic activities during muscle differentiation in vitro. Develop Biol 25:1–29

    PubMed  Google Scholar 

  46. Shainberg A, Brik H, Bar-Shavit R, Sampson SR (1984) Inhibition of acetylcholine receptor synthesis by thyroid hormones. J Endocr 101:141–147

    PubMed  Google Scholar 

  47. Simonides WS, Hardeveld C Van (1985) The effect of hypothyroidism on sarcoplasmic reticulum in fast twitch muscle of the rat. Biochim Biophys Acta 844:129–141

    PubMed  Google Scholar 

  48. Suko J (1971) Alterations of Ca2+-activated ATPase of cardiac sarcoplasmic reticulum in hyper- and hypothyroidism. Biochim Biophys Acta 252:324–327

    PubMed  Google Scholar 

  49. Suko J (1973) The calcium pump of cardiac sarcoploasmic reticulum Functional alterations of different levels of thyroid state in rabbits. J Physiol (Lond.) 228:563–581

    Google Scholar 

  50. Tada M, Yasmamoto T, Tonomura Y (1978) Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev 58:1–79

    PubMed  Google Scholar 

  51. Vale MGP, Carvalho AP (1973) Effects of Ruthenium red on Ca2+ uptake and ATPase of sarcoplasmic reticulum of rabbit skeletal muscle. Biochem Biophys Acta 325:29–37

    PubMed  Google Scholar 

  52. Winder WW, Holloszy JO (1977) Response of mitochondria of different types of skeletal muscle to thyrotoxicosis. Am J Physiol 232:C180-C184

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brik, H., Shainberg, A. Thyroxine induces transition of red towards white muscle in cultured heart cells. Basic Res Cardiol 85, 237–246 (1990). https://doi.org/10.1007/BF01907112

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907112

Key words

Navigation