Skip to main content
Log in

The mechanism of the heart's adaptation to prolonged load and dynamics of RNA synthesis in the myocardium

Der Mechanismus der Anpassung des Herzens an langdauernde Mehrbelastung und die Dynamik der RNA-Synthese im Myokard

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Calculation of RNA synthesis rate in the rat myocardium during compensatory heart hyperfunction (CHH) was based on the study of the dynamics of RNA concentration and degradation. The parallel consideration of RNA synthesis rate and phosphorylation potential ([ADP]·[Pi]/[ATP]) showed that in the early stage of CHH, RNA synthesis rate increase follows phosphorylation potential increase. With literature data having been reviewed, the paper shows that this fact corresponds to the general concept that the deficit of high energy phosphate compounds is the signal activating the genetic apparatus and “triggering” the formation of the structural basis of heart adaptation to prolonged load. The paper further shows that protein synthesis activation and heart mass increase in the process of heart hyperfunction are conditioned not only by RNA concentration and the increase in ribosome amount, but, as well, by the increase in the ratio of translating to nontranslating ribosomes. The signal activating the genetic apparatus might ensure synthesis increase of messenger RNA exceeding that of ribosomal RNA and thus explain the shift in the ratio.

The heart's adaptation to prolonged load develops incessantly as an indispensable element of the organism's adaptation to the outer environment or to a progressively developing ailment. It seems reasonable to view the mechanism of the heart's adaptation to prolonged load on the basis of a more general concept of adaptation. The paper, therefore, summarizes the general concept of the adaptation mechanism recently developed in our laboratory (10–17, 19) and presents the experimental data on RNA biosynthesis in the myocardium during compensatory hyperfunction of the heart in terms of this mechanism.

Zusammenfassung

Die RNS-Synthesegeschwindigkeit während kompensatorischer Hyperfunktion des Herzens konnte nach der Bestimmung des zeitlichen Verlaufs von RNS-Konzentration und RNS-Abbau berechnet werden. Die gleichzeitige Verfolgung von RNS-Synthesegeschwindigkeit und Phosphorylierungspotential ([ADP]·[Pi]/[ATP]) zeigte, daß im frühen Stadium der Herzhyperfunktion die Steigerung der RNS-Synthesegeschwindigkeit nach dem Anstieg des Phosphorylierungspotentials einsetzt. Zusammen mit den zitierten Daten aus der Literatur entsprechen diese Befunde dem allgemeinen Konzept, daß das Defizit an energiereichen Phosphaten das Signal für die Aktivierung des Gen-Apparates darstellt und Strukturveränderungen zur Adaptation des Herzens an erhöhte Belastung auslöst. Weiterhin wurde gezeigt, daß die Aktivierung der Proteinsynthese und die Steigerung des Herzgewichts bei Hyperfunktion nicht nur durch Erhöhung der RNS-Konzentration und der Ribosomenmenge bedingt ist, sondern auch durch die Zunahme des Verhältnisses von zur Proteinsynthese fähigen Polyribosomen zu “nichtsynthese-bereiten” Ribosomen. Dieses veränderte Verhältnis könnte dadurch bedingt sein, daß das Gen-aktivierende Signal eine vermehrte Synthese der messenger-RNS im Vergleich zur ribosomalen RNS auslöst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeeva, A. M., To the question on transformation phosphocreatin into creatinin and about a new technique for phosphocreatin determination. Biokhimija (Russ.)16, 97–103 (1951).

    Google Scholar 

  2. Acros, J. C., R. S. Sohal, S. Sun, M. Argus, A. Burch, Changes in ultrastructure and respiratory control in mitochondria of cat heart hypertrophied by exercise. Experim. molec. Pathology8, 49–65 (1968).

    Article  Google Scholar 

  3. Aschenbrenner, V., R. Zak, A. F. Cutilletta, M. Rabinowitz, Effect of hypoxia on degradation of mitochondrial components in rat cardiac muscle. Amer. J. Physiol.221, 1418–1425 (1971).

    PubMed  Google Scholar 

  4. Bajusz, E., C. W. Nison, W. Todd, Interaction between genetic and environmental factors in the genesis and clinical course of the cardiomyopathy in Syrian hamster. In: International study Group for research in cardiac metabolism. III. Annual meeting. Vermont, USA 1970, p. 31–32.

  5. Gollnik, P. D., D. W. King, Effect of exercise and training on mitochondria of rat skeletal muscle. Amer. J. Physiol.216, 1502–1509 (1969).

    PubMed  Google Scholar 

  6. Gudbjarnason, S., W. Brasch, R. J. Bing, Protein synthesis in cardiac hypertrophy and heart failure. In: Herzinsuffizienz. Symposium in Hinterzarten, S. 184–189 (Stuttgart 1968).

  7. Hamberger, A., N. Gregson, L. Lehninger, The effect of acute exercise on amine acid incorporation into mitochondria of rabbit tissues. Biochim. Biophys. Acta186, 373–383 (1968).

    Google Scholar 

  8. Heywood, S. M., R. M. Dowben, A. Rich, The identification of polyribosomes synthesizing myosin. Proc. Nat. Acad. Sci.57, 1002–1009 (1967).

    PubMed  Google Scholar 

  9. Heywood, S. M., R. M. Dowben, A. Rich, A study of muscle polyribosomes and the coprecipitation of polyribosomes with myosin Biochemistry7, 3289 (1968).

    Article  PubMed  Google Scholar 

  10. Holloszy, J. O., Biochemical adaptation in muscle. J Biol. Chem.242, 2278–2286 (1967).

    PubMed  Google Scholar 

  11. Meerson, F. Z., Compensatory hyperfunction of the heart and cardiac insufficiency. Circulat. Res.10,250–258 (1962).

    PubMed  Google Scholar 

  12. Meerson, F. S., Myocardium in hyperfunction, hypertrophy and cardiac insufficiency (Moscow 1965).

  13. Meerson, F. S., The myocardium in hyperfunction, hypertrophy and heart failure. Circulat. Res.25, Suppl 2, 1–163 (1969).

    Google Scholar 

  14. Meerson, F. Z., Mechanism of hypertrophy of the heart and experimental prevention of acute cardiac insufficiency. Brit. Heart J.33, Suppl. 100–108 (1971).

    PubMed  Google Scholar 

  15. Meerson, F. S., Role of the synthesis of nucleic acids and proteins in the adaptation of the organism to altitude hypoxia. Cardiologia56, 173–187 (1972).

    Google Scholar 

  16. Meerson, F. Z., The development of modern performance about the machanism of cardiac hypertrophy. Cardiologia (Russ.)4, 5–12 (1972).

    Google Scholar 

  17. Meerson, F. Z., Possible mechanism of cardiac hypertrophy. Acta biol. med. German29, 271–280 (1972).

    PubMed  Google Scholar 

  18. Meerson, F. Z., L. U. Golubeva, Effect of preliminary adaptation to the basic factors of the environment on ATP concentration and phosporylation potential in myocardium in acute overloading of the heart. Doklady Akad. Nauk SSSR (Russ.)210, 989–993 (1973).

    Google Scholar 

  19. Meerson, F. Z., V. D. Pomoinitsky, The role of high energy phosphate compounds in the development of cardiac hypertrophy. J. Molec. Cell. Cardiol.4, 571–597 (1972).

    Article  Google Scholar 

  20. Meerson, F. Z., T. A. Zaletaeva, S. S. Laguchev, M. G. Pshennikova, Structure and mass of mitochondria in process of compensatory hyperfunction and hypertrophy of the heart. Exper. Cell. Res.36, 568–578 (1964).

    Article  Google Scholar 

  21. Moroz, L. A., Protein synthesis activity of heart microsomes and ribosomes during left ventricular hypertrophy in rabbits. Circulat. Res.21, 449–456 (1967).

    PubMed  Google Scholar 

  22. Nair, K. G., A. F. Cutilletta, R. Zak, T. Koide, M. Rabinowitz, Biochemical correlates of cardiac hypertrophy. I. Experimental model; changes in heart weight RNA content, and nuclear RNA polymerase activity. Circulat. Res.23, 451–462 (1968).

    PubMed  Google Scholar 

  23. Olivo, O. M., Quote onW. Warbanow-Morphologische und funktionelle Untersuchungen der hypothermiebedingten Hypertrophie des embryonalen Hühnerherzens. Acta Biol. Med., Germ.25 281–293 (1970).

    Google Scholar 

  24. Rona, G., C. I. Chappel, T. Balazs, R. Gaudry, An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch. Path.67, 443–449 (1959).

    Google Scholar 

  25. Schmidt, G., S. Thannhauser, A method for the determination of desoxyribonucleic acid, ribonucleic acid and phosphoproteins in animals. J. Biol. Chem.161, 83 (1945).

    Google Scholar 

  26. Schreiber, S. S., M. Oratz, M. A. Rothshild, Initiation of protein synthesis in the acutely overloaded perfused heart. In: Cardiac Hypertrophy, p. 215 (New York and London 1971).

  27. Schwartz, A., L. A. Sardahl, C. A. Crow, S. Harigaya, W. B. McCollum, B. Bajusz, Several biochemical characteristics of the cardiomyopathic Syrian Hamster. In: International Study Group for research in cardiac metabolism. III. Annual meeting. Vermont, USA, 1970, p. 29.

  28. Spirin, A. S., Spectrophotometric determination of nuclein acids summary quantity. Biochimia (Russ.)23, 656–662 (1958).

    Google Scholar 

  29. Stanton, H. C., G. Brenner, E. D. Mayfield, Studies on isoproterenol induced cardiomegaly in rats. Amer. Heart J.77, 72–80 (1969).

    Article  PubMed  Google Scholar 

  30. Warbanow, W., Morphologische und funktionelle Untersuchungen der hypothermiebedingten Hypertrophie des embryonalen Hühnerherzens. Acta Biol. Med., Germ.25, 281–293 (1970).

    Google Scholar 

  31. Zak, R., D. A. Fischman, Studies on protein synthesis in heart muscles during development and in experimentally produced hypertrophy. In: Cardiac Hypertrophy (New York, London 1971), p. 247–258.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meerson, F.Z., Javitz, M.P., Breger, A.M. et al. The mechanism of the heart's adaptation to prolonged load and dynamics of RNA synthesis in the myocardium. Basic Res Cardiol 69, 484–499 (1974). https://doi.org/10.1007/BF01906981

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906981

Keywords

Navigation