Skip to main content
Log in

Physiological hypotheses-Intramyocardial pressure. A new concept, suggestions for measurement

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Intramyocardial pressure is supposed to play a major role in systolic coronary flow impediment. Via its assumed relation with radial wall stress it is supposed to be similar to ventricular pressure at the endocardium and decreases linearly to negligible values epicardially. Many attempts to measure intramyocardial pressure have been reported in the literature with rather different results. For instance, with most of the various methods, intramyocardial pressures both higher and lower than left ventricular pressure have been obtained and intramyocardial pressures of more than 125 mm Hg have been found in low-loaded isobaric beats (negligible pressure development in systole).

In this “physiological hypotheses paper” I suggest left ventricular pressure and intramyocardial pressure both to result from the varying stiffness of cardiac muscle over the heart cycle. For any intramuscular cavity a time varying pressure-volume (P-V) relation results from the changes in muscle stiffness, the so-called time varying elastance defined as E(t)=P(t)/V(t), and with maximal or systolic clastance called Emax. For a constant contractile state the time varying clastance (E(t)) is suggested to be almost independent of preload and afterload. This concept has been well established for the ventricular cavities, but is here proposed to hold for the interstitial space as well. If a cavity is subject to isovolumic conditions the pressure will be high, but when volume in systole decreases (ventricular cjection or squeezing out of interstitial fluid) pressures will be lower. Thus for constant load on the interstitial cavities, but different loads on the ventricle, left ventricular pressure will vary while intramyocardial pressure remains the same. For low-loaded isobaric beats where left ventricular pressure is minimal intramyocardial pressure will remain the same as during normal ventricular loads and isovolumic beats. Augmented contractility will increase Emax and this will increase left ventricular and intramyocardial pressure only by the same amount if loading conditions of both cavities remain the same.

Both ventricular pressure and intramyocardial pressure arise from varying stiffness of cardiac muscle and intramyocardial pressure does not result from left ventricular pressure. A proportionality of left ventricular and intramyocardial pressure is therefore not to be expected. The results on intramyocardial pressure obtained by the different methods used in the literature should be re-interpreted taking this concept into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anrep GV, Saalfeld E v (1933) The effect of the cardiac contraction upon the coronary flow. J Physiol (London) 79:317–331

    Google Scholar 

  2. Anrep GV, Cruickshank EWH, Downing AC, Subba Rau A (1927) The coronary circulation in relation to the cardiac cycle. Heart 14:111–133

    Google Scholar 

  3. Anrep GV, Häusler H (1928) The coronary circulation. I. The effect of changes of the bloodpressure and of the output of the heart. J Physiol (London) 65:357–373

    Google Scholar 

  4. Anrep GV, Davis JC, Volhard E (1931) The effect of pulse pressure upon the coronary blood flow. J Physiol (London) 73:405–425

    Google Scholar 

  5. Archie JP (1975) Intramyocardial pressure: effect of preload on transmural distribution of systolic coronary blood flow. Am J Cardiol 35:904–911

    PubMed  Google Scholar 

  6. Armour JA, Randall WC (1971) Canine left ventricular intramyocardial pressures. Am J Physiol 220:1833–1839

    PubMed  Google Scholar 

  7. Arnold G, Kosche F, Miessner E, Neitzert A, Lochner W (1968) The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflügers Arch 229:339–356

    Google Scholar 

  8. Arts T (1978) A mathematical model of the dynamics of the left ventricle and the coronary circulation. PhD Thesis, University of Limburg, Maastricht, The Netherlands

    Google Scholar 

  9. Arts T, Reneman RS (1985) Interaction between intramyocardial pressure (IMP) and myocardial circulation. J Biomech Engng 107:51–56

    Google Scholar 

  10. Ashikawa K, Kanatsuka H, Suzuki T, Takishima T (1986) Phasic blood flow velocity pattern in cpimyocardial microvessels in the beating canine left ventricle, Circ Res 59:704–711

    PubMed  Google Scholar 

  11. Baird RJ, Manktelow RT, Cohoon WJ, Williams WG, Spratt EH (1968) Improved pressure gradients and flow rates in myocardial vascular implants. Ann Surg 168:736–749

    PubMed  Google Scholar 

  12. Baird RJ, Manktelow RT (1969) The systolic pressure in the tunnelled portion of a myocardial vascular implant. J Thoracic and Cardiovasc Surg 57:714–720

    Google Scholar 

  13. Baird RJ, Makktelow RT, Shah PA, Ameli FM (1970) Intramyocardial pressure. A study of its regional variations and its relationship to intraventricular pressure. J Thoracic and Cardoivasc Surg 59:810–823

    Google Scholar 

  14. Baird RJ, Ameli FM (1971) The changes in intramyocardial pressure produced by acute ischemia. J Thoracic and Cardivasc Surg 62:87–94

    Google Scholar 

  15. Baird RJ, Goldbach MM, de la Rocha A (1972) Intramyocardial pressure. The persistence of its transmural gradient in the empty heart and its relationship to myocardial oxygen consumption. J Thoracic and Cardiovasc Surg 64:635–646

    Google Scholar 

  16. Braakman R, Sipkema P, Westerhof N (1989) A dynamic non linear lumped parameter model for skeletal muscle circulation. Ann Biomed Engng 17:593–616

    Google Scholar 

  17. Brandi G, McGregor M (1969) Intramural pressure in left ventricle of the dog. Cardiovasc Res 3:472–475

    PubMed  Google Scholar 

  18. Carew TE, Covell JW (1976) Effect of intramyocardial pressure on the phasic flow in the intraventricular septal artery. Cardiovasc Res 10:56–64

    PubMed  Google Scholar 

  19. Dieudonné JM (1967) Tissuc-cavitary difference pressure of dog left ventricle. Am J Physiol 213:101–106

    PubMed  Google Scholar 

  20. Dieudonné JM (1967) Tissue-cavitary difference pressure of dog myocardium under stress. Am J Physiol 213:107–111

    PubMed  Google Scholar 

  21. DiPalma JR, Reiss RA (1948) Myographic study of the cat's heart: effect of changes in venous return and in peripheral resistance on ventricular contraction. Am J Physiol 155:327–335

    Google Scholar 

  22. Downcy JM, Chagrasulis RW, Hemphill VC (1979) Quantitative study of intramyocardial compression in the fibrillating heart. Am J Physiol 237:H191-H196

    PubMed  Google Scholar 

  23. Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36:753–760

    PubMed  Google Scholar 

  24. D'Silva JL, Mendel D, Winterton MC (1960) Determinants of intramyocardial pressure in the cat. Am J Physiol 207:1117–1122

    Google Scholar 

  25. Feigl EO (1983) Coronary Physiology. Physiol Rev 63:1–205

    PubMed  Google Scholar 

  26. Gerke E, Juchelka W, Mittmann U, Schmier J (1975) Der intramyokardiale Druck des Hundes in verschiedene Tiefen, bei Druckbelastung und bei Ischämie des Herzmuskels. Bas Res Cardiol 70:537–546

    Google Scholar 

  27. Green HD, Gregg DD, Wiggers CJ (1935) The phasic changes in coronary flow established by differential pressure curves. Am J Physiol 112:627–639

    Google Scholar 

  28. Gregg DE, Green HD, Wiggers CJ (1935) Phasic variations in peripheral coronary resistance and their determinants. Am J Physiol 112:362–373

    Google Scholar 

  29. Gregg DE, Eckstein RW (1941) Measurements of intramyocardial pressure. Am J Physiol 132:781–790

    Google Scholar 

  30. Hamlin RL, Levesque MJ, Kittleson MD (1982) Intramyocardial pressure and distribution of coronary blood flow during systole and diastole in the horse. Cardiovasc Res 16:256–262

    PubMed  Google Scholar 

  31. Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249:H1216-H1223

    PubMed  Google Scholar 

  32. Huijghe JMRJ (1986) Non-linear finite element models of the beating left ventricle and the intramyocardial coronary circulation. PhD Thesis, Technical University, Eindhoven, The Netherlands

    Google Scholar 

  33. Huisman RM (1977) Forces in the wall of the left ventricle. PhD Thesis, Free University of Amsterdam, The Netherlands

    Google Scholar 

  34. Johnson JR, DiPalma JR (1939) Intramyocardial pressure and its relation to aortic blood pressure. Am J Physiol 125:234–243

    Google Scholar 

  35. Kass DA, Beyar R, Lankford E, Heard M, Maughan WL, Sagawa K (1989) Influence of contractile state on curvilincarity of in situ end-systolic pressure-volume relations. Circulation 79:167–178

    PubMed  Google Scholar 

  36. Kajiya F, Tsujioka K, Ogasawara Y, Hiramatsu O, Wada Y, Goto M, Yanaka M (1989) Analysis of characteristics of the flow velocity waveforms in left atrial small arteries and veins in the dog. Circ Res 65:1172–1181

    PubMed  Google Scholar 

  37. Kirk ES, Honig CR (1964) An experimental and theroretical analysis of myocardial tissue pressure. Am J Physiol 207:361–367

    PubMed  Google Scholar 

  38. Kissling G, Takeda N, Vogt M (1985) Left ventricular end-systolic pressure-volume relationships as a measure of ventricular performance. Basic Res Cardiol 80:594–607

    PubMed  Google Scholar 

  39. Kober G, Scholtholt J (1976) Continuous recording of local myocardial function in normal and ischemic myocardium. Basic Res Cardiol 71:150–159

    PubMed  Google Scholar 

  40. Krams R, Haelst ACTA van, Sipkema P, Westerhof N (1989) Can coronary systolic-diastolic flow differences be related to left ventricular pressure? A study in the isolated rabbit heart. Basic Res Cardiol 84:149–159

    PubMed  Google Scholar 

  41. Krams R, Sipkema P, Westerhof N (1989) The varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 257:H1471–1479

    PubMed  Google Scholar 

  42. Krams R, Sipkema P, Westerhof N (1989) Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 257:H1936-H1944

    PubMed  Google Scholar 

  43. Kreuzer H, Schoeppe W (1963a) Das Verhalten des Druckes in der Herzwand. Pflügers Arch 278:181–198

    Article  Google Scholar 

  44. Kreuzer H, Schoeppe W (1963b) Zur Entstehung der Differenz zwischen systolischem Myokard-und Ventrikeldruck. Pflügers Arch 278:199–208

    Article  Google Scholar 

  45. Kreuzer H, Schoeppe W (1963c) Der Myokarddruck bei veränderter Coronardurchblutung und bei Ischämie. Pflügers Arch 278:209–220

    Article  Google Scholar 

  46. Kreuzer H, Schoeppe W (1963d) Die Druckübertragung in der Wand des toten Herzens. Pflügers Arch 278:221–228

    Google Scholar 

  47. Langendorff O (1899) Zur Kenntnis des Blutlaufs in den Gefäßen des Herzens. Pflügers Arch 78:423–440

    Google Scholar 

  48. Laszt L, Müller A (1958) Der Myokardiale Druck. Helv Physiol Acta 16:88–106

    Google Scholar 

  49. Marzilli M, Goldstein S, Sabbah HN, Lee T, Stein PD (1979) Modulating effect of regional myocardial performance on local myocardial perfusion in the dog. Circ Res 45:634–641

    PubMed  Google Scholar 

  50. Marzilli M, Sabbah HN, Stein PD (1980) Supply-demand balance of subendocardial muscle. J Thorac Cardiovasc Surg 79:803–808

    PubMed  Google Scholar 

  51. Meer JJ van der, Reneman RS, Schneider H, Wieberdink J (1970) A technique for estimation of intramyocardial pressure in acute and chronic experiments. Cardiovasc Res 4:132–140

    PubMed  Google Scholar 

  52. Meer JJ van (1972) Myocardial ischaemia and epicardiectomy. PhD Thesis, University of Utrecht, The Netherlands

    Google Scholar 

  53. Nellis SH, Whitesell L (1989) Phasic pressures and diameters in small epicardial veins of the unrestrained rat. Am J Physiol 257:H1056-H1061

    PubMed  Google Scholar 

  54. Nematzadeh D, Rose JC, Schryver Th, Huang HK, Kot PA (1984) Analysis of methodology for measurement of intramyocardial pressure. Basic Res Cardiol 79:86–97

    PubMed  Google Scholar 

  55. Olsen GO, Attarian DE, Jones RN, Hill RC, Sink JD, Lee KL, Wechsler AS (1981) The coronary pressure-flow determinants of left ventricular compliance in dogs. Circ Res 49:856–865

    PubMed  Google Scholar 

  56. Pifarré R (1968) Intramyocardial pressure during systole and diastole. Ann Surg 168:871–875

    PubMed  Google Scholar 

  57. Porter WT (1898) The influence of the heart-beat on the flow of blood through the walls of the heart. Am J Physiol 1:145–163

    Google Scholar 

  58. Rabbany SY, Kresh JY, Noordergraaf A (1989) Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am J Physiol 257:H357-H364

    PubMed  Google Scholar 

  59. Sagawa K (1978) The ventricular pressure-volume diagram revisited. Circ Res 43:677–687

    PubMed  Google Scholar 

  60. Salisbury PF, Cross CE, Rieben PA (1962) Intramyocardial pressure and strength of left ventricular contraction. Circ Res 10:608–623

    PubMed  Google Scholar 

  61. Satoh S, Watanabe J, Keitoku M, Itoh N, Maruyama Y, Takishima T (1988) Influences of pressure surrounding the heart and intracardiac pressure on the diastolic coronary pressure-flow relation in excised canine heart. Circ Res 63:788–797

    PubMed  Google Scholar 

  62. Scmonosky CA, Ellison RG (1971) Hemodynamics of the tunneled segment of a myocardial vascular implant. The Ann of Thorac Surg 12:171–178

    Google Scholar 

  63. Spaan JAE, Breuls NPW, Laird LD (1981) Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 49:584–593

    PubMed  Google Scholar 

  64. Spaan JAE (1985) Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 56:293–309

    PubMed  Google Scholar 

  65. Stein PD, Sabbah HN, Marzilli M, Blick EF (1980) Comparison of the distribution of intramyocardial pressure across the canine left ventricular wall in the beating heart during diastole and in the arrested heart. Evidence of epicardial muscle tone during diastole. Circ Res 47:258–267

    PubMed  Google Scholar 

  66. Stein PD, Marzilli M, Sabbah HN, Lee T (1980) Systolic and diastolic pressure gradients within the left ventricular wall. Am J Physiol 238:H625-H630

    PubMed  Google Scholar 

  67. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantancous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 23:314–322

    Google Scholar 

  68. Suga H, Sagawa K (1974) Instantancous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35:117–126

    PubMed  Google Scholar 

  69. Suga H, Sagawa K, Demer L (1980) Determinants of instantaneous pressure in the canine left ventricle. Circ Res 46:256–263

    PubMed  Google Scholar 

  70. Sunagawa K, Maughan WL, Sagawa K (1983) Effect of regional ischemia on the left ventricular end-systolic pressure-volume relationship of isolated canine hearts. Circ Res 52:170–178

    PubMed  Google Scholar 

  71. Westerhof N, Sipkema P, Huis GA van (1983) Coronary pressure-flow relations and the vascular waterfall. Cardiovasc Res 17:162–169

    PubMed  Google Scholar 

  72. Wiggers GJ, Cotton FS (1933) Studies on the coronary circulation. II. The systolic and diastolic flow through the coronary vessels. Am J Physiol 106:597–610

    Google Scholar 

  73. Williams RB, Trenier HM, Sobin SS (1981) Redistribution of canine left ventricular blood flow in unloaded systole. Circ Res 49:203–211

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westerhof, N. Physiological hypotheses-Intramyocardial pressure. A new concept, suggestions for measurement. Basic Res Cardiol 85, 105–119 (1990). https://doi.org/10.1007/BF01906964

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906964

Key words

Navigation