Basic Research in Cardiology

, Volume 83, Issue 6, pp 577–589 | Cite as

Blood flow and blood volume determinations in aorta and in coronary circulation by density dilution

  • M. Moser
  • T. Kenner
Original Contributions

Summary

Continuous blood mass-density measurements were performed in anesthetized dogs and injections of 0.7–1.4 ml/kg isotonic saline solution were applied. The resulting density dilution curves were used to compute blood volume, total flow in the aorta and local flow in the coronary circulation. Blood volume calculations were compared with blood volume determined by Evans blue injections and a close agreement was found. Blood flow determined by density dilution was independent from the investigated sites of injection or sampling. We conclude from these results that small volume injections of isotonic saline solution can be used to determine blood volume and flow by density dilution.

In addition to these findings, a marked retention of the injected fluid was observed. Possible mechanisms to explain this retention include albumin deposition in the endothelial pores and/or variations of blood viscosity and capillary pressure.

Key words

blood flow blood volume density dilution isotonic saline blood mass density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biological Handbooks (1971) Respiration and Circulation, FASEB, Bethesda, MarylandGoogle Scholar
  2. 2.
    Brace RA, Power GG (1981) Thoracic duct lymph flow and protein flux dynamics: response to intravascular saline. Am J Physiol 240:R282-R288PubMedGoogle Scholar
  3. 3.
    Chinard FP, Enns T, Nolan MF (1962) Indicator-dilution studies with “diffusible” indicators. Circulation Research 10:473–490PubMedGoogle Scholar
  4. 4.
    Chinard F, Enns T (1954) Transcapillary pulmonary exchange of water in the dog. Am J Physiol 178:197–202PubMedGoogle Scholar
  5. 5.
    Fell C, Rushmer RF (1961) Anatomic distribution of induced changes in blood volume, evaluated by regional weighting. J Appl Physiol 16 (1):85–88PubMedGoogle Scholar
  6. 6.
    Gamas L, Lee JS (1986) Density indicator method to measure pulmonary blood flow. J Appl Physiol 60:327–334CrossRefPubMedGoogle Scholar
  7. 7.
    Hinghofer H (1986) Continuous blood densitometry: Fluid shifts after graded hemorrhage in animals. Am J Physiol 250:H342-H350PubMedGoogle Scholar
  8. 8.
    Holzer H, Leopold H, Hinghofer-Szalkay H, Stübchen-Kirchner H, Maurer E (1978) Gesamteiweißbestimmung im Serum durch Dichtemessung nach der Biegeschwingermethode. J Clin Chem Clin Biochem 16:394–395Google Scholar
  9. 9.
    Kenner T, Moser M, Hinghofer-Szalkay H (1980) Determination of cardiac output and transcapillary fluid exchange by continuous recording of blood density. Basic Res Cardiol 75:501–509PubMedGoogle Scholar
  10. 10.
    Kenner T (1982): Physiological measurement in circulation research. Med Progr Techn 9:67–74Google Scholar
  11. 11.
    Kenner T, Leopold H, Hinghofer-Szalkay H (1977) The continuous high precision measurement of the density of flowing blood. Pflügers Arch 370:151–157CrossRefGoogle Scholar
  12. 12.
    Kenner T, Moser M, Hinghofer-Szalkay H (1980) Determination of cardiac output and transcapillary fluid exchange by continuous recording of blood density. Basic Res Cardiol 75:501–509PubMedGoogle Scholar
  13. 13.
    Kratky O, Leopold H, Stabinger H (1969) Dichtemessung an Flüssigkeiten und Gasen auf 10−6 g/cm3 bei 0,6 cm3 Präparatvolumen. Z angew Physik 27:273–277Google Scholar
  14. 14.
    Lee J, Salathe EP, Schmid-Schönbein GW (1987) Fluid exchange in skeletal muscle with viscoclastic blood vessels. Am J Physiol 253:H1548-H1556PubMedGoogle Scholar
  15. 15.
    Michel CC (1988) Microvascular exchange and its regulation. Pflügers Arch 411:R8-R9CrossRefGoogle Scholar
  16. 16.
    Michel CC (1984) Fluid movements through capillary walls. Hb of Physiol Sect 2, Vol 4; Part 1, pp 375–409Google Scholar
  17. 17.
    Moser M (1980) Die Anwendbarkeit von Blut- und Plasmadichtemessungen mittels der Biegeschwingermethode auf Fragen des Flüssigkeitsaustausches in der Mikrozirkulation. Dissertation GrazGoogle Scholar
  18. 18.
    Moser M, Hinghofer-Szalkay H, Kenner Th, Holzer H (1980) Die Bestimmung des kolloidosmotischen Drucks aus der Plasmadichte mittels der Biegeschwingermethode. J Clin Chem Clin Biochem 18:233–236PubMedGoogle Scholar
  19. 19.
    Moser M, Kenner T, Hinghofer-Szalkay H, Wurm H (1982) Distribution spaces of intravenously injected saline, plasma and red cell concentrate. Pflügers Arch 394 S, R48Google Scholar
  20. 20.
    Parker JC, Perry MA, Taylor AE (1984) Permeability of the microvascular barrier. In: Edema, Staub NC, Taylor AE (eds) Raven PressGoogle Scholar
  21. 21.
    Trautman E, Newbower RS (1984) The development of indicator-dilution techniques. IEEE Trans on Biochem Eng 12:800–807Google Scholar
  22. 22.
    Wasserman K, Mayerson HS (1952) Mechanism of plasma protein changes following saline infusions. Am J Physiol 170:1–10PubMedGoogle Scholar
  23. 23.
    Wolf MB (1975) Estimation of parameters affecting rapid fluid transfers in the whole body. I. Isotonic infusions. Ann Biomed Eng 3:209–224PubMedGoogle Scholar
  24. 24.
    Wolthuis RA, Overbeck HW, Collins WD (1969) Measurement of blood flow in the limb of man by cuvette densitometry. J Appl Physiol 26(2):215–220PubMedGoogle Scholar
  25. 25.
    Yudilevich DL, Alvarez OA (1967) Water, sodium, and thiourea transcapillary diffusion in the dog heart. Am J Physiol 213(2):308–314PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1988

Authors and Affiliations

  • M. Moser
    • 1
  • T. Kenner
    • 1
  1. 1.Physiologisches Institut der Universität GrazGrazAustria

Personalised recommendations