Skip to main content
Log in

Influence of starvation and total protein deprivation on cardiac mRNA levels

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The effect of starvation and of protein-deprivation on the extractable amount of cardiac mRNA was investigated in male rats. Cardiac mRNA was determined by either (a) isolations of cardiac mRNA by SDS-Phenol/oligo-dT-cellulose, or by (b) hybridization of cardiac mRNA to3H-Poly(U). During starvation (1–6 days) the extractable amount of cardiac microsomal RNA decreased from 870 μg/g heart (controls) to 606 μg/g (3 days) and to 547 μg/g (6 days), the extractable amount of mRNA fell from 28.6 μg/g heart (controls) to 18.7 μg/g (3 days) and to 14.5 μg/g (6 days). When a normocaloric but proteindeficient diet was fed, the decreases in cardiac microsomal RNA and mRNA were qualitatively similar, out slightly less severe. An analysis of the intracellular distribution of cardiac microsomal RNA and mRNA in the hearts of normal animals and of animals starved or fed a protein-deficient diet indicates that during starvation cardiac mRNA does not accumulate in the cell sap, but gets rapidly degraded. In the refeeding period, mRNA is transported from the nucleus to the cytoplasm and engages in polyribosome formation. The specific mRNA species coding for the major myofibrillar cardiac proteins are affected to a similar extent by these changes during starvation/protein-deprivation and refeeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Austin S, Clemens M (1981) The regulation of protein synthesis in mammalian cells by amino acids supply. Bioscience Report 1:35–44

    Article  Google Scholar 

  2. Bonner W, Laskey R (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88

    Article  PubMed  Google Scholar 

  3. Carter W, Benjamin W, Faas F (1980) Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle. Metabolism 29:910–915

    Article  PubMed  Google Scholar 

  4. Chain E, Sender P (1972) Insulin and protein synthesis in the perfused rat heart. Biochem J 129:14

    Google Scholar 

  5. Chain E, Sender P (1973) Protein synthesis by perfused hearts from normal and insulin-deficient rats. Biochem J 132:593–601

    PubMed  Google Scholar 

  6. David M, Avi-Dor Y (1975) Stimulation of protein synthesis in cultured heart muscle cells by glucose. Biochem J 150:405–411

    PubMed  Google Scholar 

  7. Gamulin S, Naracsik P (1978) Alteration of hepatic polyribosome structure and function in mice during hypothermia. Exper Mol Pathol 28:372–380

    Article  Google Scholar 

  8. Gannon MC, Tan AWH, Nuttal FQ (1981) Effect of starvation and insulin treatment on glycogen synthase D and synthase D phosphatase activity in rat heart. Mol Cell Biochem 34:31–34

    PubMed  Google Scholar 

  9. Giovanetti P, Stothers S (1975) Influence of diet and age on ribonucleic acid, protein and free amino acid levels of rat skeletal muscle. Growth 39:1–16

    PubMed  Google Scholar 

  10. Hjalmarson A, Rannels D, Kao R, Morgan H (1975) Effects of hypophysectomy, growth hormone, and thyroxine on protein turnover in heart. J Biol Chem 250:4556–4561

    PubMed  Google Scholar 

  11. Houdebine L (1981) Le controle de la synthese proteique dans les cellules des eucaryotes. Reprod Nutr Develop 21:209–235

    Google Scholar 

  12. Layman D, Swan P, Hegarty P (1981) The effect of acute dictary restriction on muscle fibre number in weanling rats. Br J Nutr 45:475–481

    PubMed  Google Scholar 

  13. Lesch M, Peterson M (1975) Studies on the anoxic inhibition of myocardial protein synthesis. In: Roy P, Harris P (eds) Recent advances in studies on cardiac structure and metabolism, vol 8. The cardiac sarcoplasm. University Park Press Baltimore, pp 101–115

    Google Scholar 

  14. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  15. Milward D (1975) Diet and protein metabolism in skeletal muscle. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press. New York, Toronto Oxford Sydney Braunschweig, pp 203–231

    Google Scholar 

  16. Morgan H, Rannels D (1975) The control of protein turnover in the isolated perfused rat heart. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 233–246

    Google Scholar 

  17. Morgan H, Earl D, Broadus A, Wolpert E, Giger K, Jefferson L (1971) Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J Biol Chem 246:2152–2162

    PubMed  Google Scholar 

  18. Morgan H, Jefferson L, Wolpert E, Rannels D (1971) Regulation of protein synthesis in heart muscle. II. Effect of amino acid levels and insulin on ribosomal aggregation. J Biol Chem 246:2163–2170

    PubMed  Google Scholar 

  19. Morgan H, Rannels D, Kao R (1974) Factors controlling protein turnover in heart muscle. Circ Res (Suppl III) 34:22–31

    Google Scholar 

  20. Munro H (1970) Factors in regulation of liver protein synthesis. In: Rothschild M, Waldmann T (eds) Plasma protein metabolism. Academic Press, New York London, pp 157–167

    Google Scholar 

  21. Munro H, Hubert C, Baliga B (1975) Regulation of protein synthesis in relation to amino acid supply — a review. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis — biochemical and clinical. Pergamon Press Inc N.Y., pp 33–66

    Google Scholar 

  22. Nakano K (1978) Function of dietary protein, carbohydrate and fat on in vitro protein synthesis in skeletal muscle of rats. Nutrition Rep International 18:453–464

    Google Scholar 

  23. Pain V, Levis J, Huvos P, Henshaw E, Clemens M (1980) The effect of amino acid starvation on regulation of polypeptide chain initiation in Ehrlich ascites tumor cells. J Biol Chem 255:1486–1491

    PubMed  Google Scholar 

  24. Pelham R, Jackson R (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem 67:247–256

    Article  PubMed  Google Scholar 

  25. Rabinowitz M (1974) Overview on pathogenesis of cardiac hypertrophy. Circ Res 34/35 Suppl II, 3–11

    Google Scholar 

  26. Rannels D, Kao R, Morgan H (1975) Effect of insulin on protein turnover in heart muscle. J Biol Chem 250:1694–1701

    PubMed  Google Scholar 

  27. Rannels D, Kao R, Morgan H (1977) Protein synthesis and degradation during ischemia. In: Lefer A, Kelliher G, Rovetto M (eds) Pathophysiology and therapeutics of myocardial ischemia. Spectrum Publications, New York, pp 149–168

    Google Scholar 

  28. Rannels D, Pegg A, Rannels S, Jefferson L (1978) Effect of starvation on initiation of protein synthesis in skeletal muscle and heart. Am J Physiol 235:126–133

    Google Scholar 

  29. Ravid K, Diamant P, Avi-Dor Y (1980) Glucose-dependent stimulation of protein synthesis in cultured heart muscle cells. FEBS-Letter 119:20–24

    Article  Google Scholar 

  30. Roeder RA, Broderick GA (1981) Effect of dietary protein quality on fractional rates of muscle protein synthesis and catabolism in the rat. Nutr Rep Intern 24:361–369

    Google Scholar 

  31. Rothschild M, Schreiber S, Oratz M (1975) Effects of ethanol on protein synthesis. Adv Exp Med Biol 56:179–194

    PubMed  Google Scholar 

  32. Sanford C, Griffin E, Wildenthal K (1978) Synthesis and degradation of myocardial protein during the development and regression of thyroxine-induced cardiac hypertrophy in rats. Circ Res 43:688–694

    PubMed  Google Scholar 

  33. Schreiber S, Evans C, Oratz M, Rothschild M (1981) Protein synthesis and degradation in cardiac stress. Circ Res 48:601–611

    PubMed  Google Scholar 

  34. Schreiber G, Urban J (1978) The sythesis and secretion of albumin. Rev Physiol Biochem Pharmacol 82:27–29

    PubMed  Google Scholar 

  35. Waterlow J, Garlick P (1975) Metabolic adaptions to protein deficiency. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York, Toronto Oxford Sydney Braunschweig, pp 67–94

    Google Scholar 

  36. Zähringer J, Baliga B, Munro H (1976) Novel mechanism for translational control in the regulation of ferritin synthesis by iron. Proc Nat Acad Sci USA 73:857–861

    PubMed  Google Scholar 

  37. Zähringer J, Baliga B, Crim M, Murno H (1977) Hepatic synthesis of export proteins. In: Rosenoer V, Oratz M, Rothschild M (eds) Albumin structure, function and use. Pergamon Press New York Toronto Oxford Sydney Braunschweig, pp 203–225

    Google Scholar 

  38. Zähringer J (1979) The regulation of protein synthesis in heart muscle. Klin Wochenschr 57:541–553

    Article  PubMed  Google Scholar 

  39. Zähringer J, Baliga B, Munro H (1979) Relative abundance of specific messenger-RNA species in the free mRNP fraction of rat liver. FEBS Letters 108:317–320

    Article  PubMed  Google Scholar 

  40. Zähringer J (1981) The regulation of protein synthesis in heart muscle under normal conditions and in the adriamycin-cardiomyopathy. Klin Wochenschr 59:1273–1287

    Article  PubMed  Google Scholar 

  41. Zähringer J, Kandolf R, Raum W (1981) Decrease of myocardial messenger RNA in adrianmycintreated rats. FEBS Letters 123:169–172

    Article  PubMed  Google Scholar 

  42. Zähringer J, Raum W, Kandolf R, Troesch G, Stäb G, Jäger E (1981) Isolation and characterization of structurally and functionally intact polyribosomes and mRNA from rat heart muscle. J Mol Cell Cardiol 13:127–146

    Article  PubMed  Google Scholar 

  43. Zähringer J, Pritzl N, Stäb G (1982) Quantitation of cardiac polysomal mRNA by hybridization to (3H)Pol(U). J Mol Cell Cardiol 14:539–550

    Article  PubMed  Google Scholar 

  44. Zähringer J, Klaubert A (1982) The effect of triiodothyronine on the cardiac mRNA. J Mol Cell Cardiol 14:559–571

    Article  PubMed  Google Scholar 

  45. Zähringer J, Stäb G, Pritzl N (1983) Quantitation of Poly(A)-containing mRNA in rat cardiac biopsies. Basic Res Cardiol 78:203–209

    PubMed  Google Scholar 

  46. Zähringer J (1984) Die Regulation der Proteinsynthese am normalen Herzen und unter pathologischen Bedingungen. In: Riecker G (ed) Handbuch der Inneren Medizin, Band IX, in press

  47. Zak R, Rabinowitz M (1979) Molecular aspects of cardiac hypertrophy. Ann Rev Physiol 41:539–552

    Article  Google Scholar 

  48. Zimmer H, Gerlach E (1977) Changes of myocardial adenine nucleotide and protein synthesis during development of cardiac hypertrophy. Basic Res Cardiol 72:241–246

    PubMed  Google Scholar 

  49. Zimmer H, Gerlach E (1980) Early metabolic alterations during the development of experimentally induced cardiac hypertrophy. Arzneimforsch/Drug Res 30:2001–2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zähringer, J., Pritzl, N., Geheeb, E. et al. Influence of starvation and total protein deprivation on cardiac mRNA levels. Basic Res Cardiol 80, 1–11 (1985). https://doi.org/10.1007/BF01906738

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906738

Key words

Navigation