Skip to main content
Log in

Connective tissue content and myocardial stiffness in pressure overload hypertrophy A combined study of morphologic, morphometric, biochemical, and mechanical parameters

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

We investigated samples of left ventricular myocardium from Goldblatt II (4 and 8 weeks after operation) and spontaneously hypertensive rats (SHR; 40 and 80 weeks old) by histological and morphometric methods. From the same hearts, the distensibility of the left ventricular papillary muscle was analyzed by means of resting tension curves, and the collagen content of the whole left ventricular wall was determined by means of hydroxyproline concentration.

In all groups, myocardial fibrosis was observed to accompany myocardial hypertrophy. The severity of fibrotic lesions increased with the duration of hypertension, and, in late stages, degenerative changes of cardiac myocytes were found. Morphometric determinations and chemical analysis of the hydroxyproline concentration revealed a decrease in myocardial muscle content, which was paralleled by an increase in collagen content when compared to the respective controls.

In general, morphometric and chemical findings correlate with increased myocardial stiffness observed during mechanical measurements in isolated papillary muscle preparations from the same hearts. Differences were found, however, between chemical analysis and mechanical measurements in the 40-week-old SHR group, which may result from different patterns of collagen distribution between interstitium, perivascular spaces, and the walls of blood vessels.

The comparison between histological, morphometric, chemical, and physiological data shows that (1) cardiac hypertrophy of Goldblatt and SH-rats is accompanied by myocardial fibrosis, and (2) changes in passive elastic properties of myocardium is better reflected in morphometric than in chemical analysis.

Zusammenfassung

Linksventrikuläre Myokardproben von Goldblatt-II-(4 und 8 Wochen post operationem) und spontanhypertensiven Ratten (SHR; Alter 40 und 80 Wochen) wurden histologisch und morphometrisch untersucht. Von denselben Herzen wurden zudem die Dehnbarkeit des linksventrikulären Papillarmuskels mittels Ruhe-Dehnungs-Kurven sowie der Kollagenanteil der gesamten linken Ventrikelwandung mittels Hydroxyprolinkonzentration bestimmt. Neben der zu erwartenden Hypertrophie der Myozyten fanden wir in beiden Hypertrophiemodellen eine Myokardfibrose. Das Ausmaß der Fibrose nahm mit der Dauer des Bestehens der Hypertension zu. In späteren Studien wurden zusätzlich degenerative Veränderungen an Myozyten beobachtet.

Morphometrische Bestimmungen und Hydroxyprolinkonzentration weisen einen Anstieg des Kollagengehaltes des druckbelasteten linken Ventrikels nach. Morphometrische und chemische Ergebnisse stehen im Einklang mit der myokardialen Dehnbarkeit—gemessen am isolierten Papillarmuskel derselben Herzen. Diskrepanzen, die im 40-Wochen-Stadium der SHR-Gruppe auftreten, müssen auf Unterschiede im Verteilungsmuster des Kollagens auf Interstitium, perivaskuläre Räume und Wände der Blutgefäße zurückgeführt werden. Der Vergleich histologischer, chemischer und physiologischer Ergebnisse zeigt 1., daß die Herzhypertrophie bei Goldblatt- und SH-Ratten von Myokardfibrose begleitet ist, und 2., daß Veränderungen der passiv-elastischen Eigenschaften des Myokards besser vom morphometrischen als vom chemischen Resultat widergespiegelt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpert, N. R., B. B. Hamrell, W. Halpern: Mechanical and biochemical correlates of cardiac hypertrophy. Circulat. Res.34/35 II, 71–82 (1974).

    Google Scholar 

  2. Alpert, N. R., L. A. Mulieri: Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. Circulat. Res.50, 491–500 (1982).

    PubMed  Google Scholar 

  3. Bartosova, D., M. Chvapil, B. Korecký, O. Poupa, K. Rakusan, Z. Turek, M. Vizek: The growth of the muscular and collagenous parts of the rat heart in various forms of cardiomegaly. J. Physiol.200, 285–295 (1969).

    PubMed  Google Scholar 

  4. Bing, O. H., B. L. Fanburg, W. W. Brooks, S. Matsushita: The effect of the lathyrogen β-amino propionitrile (BAPN) on the mechanical properties of experimentally hypertrophied rat cardiac muscle. Circulat. Res.43, 632–637 (1978).

    PubMed  Google Scholar 

  5. Borchard, F.: Differences between transmitter depletion in human heart hypertrophy and experimental cardiac hypertrophy in Goldblatt rats. Basic Res. Cardiol.75, 118–125 (1980).

    PubMed  Google Scholar 

  6. Borg, T. K., W. F. Ranson, F. A. Moslehy, J. B. Caulfield: Structural basis of ventricular stiffness. Lab. Invest.44, 49–54 (1981).

    PubMed  Google Scholar 

  7. Buccino, R. A., E. Harris, J. F. Spann, Jr., E. H. Sonnenblick: Response of myocardial connective tissue to development of experimental hypertrophy. Amer. J. Physiol.216, 425–428 (1969).

    PubMed  Google Scholar 

  8. Factor, S. M., R. Bhan, T. Minase, H. Wolinsky, E. H. Sonnenblick: Hypertensive-diabetic cardiomyopathy in the rat. An experimental model of human disease. Amer. J. Pathol.102, 219–228 (1981).

    Google Scholar 

  9. Ferrans, V. J., A. G. Morrow, W. C. Roberts: Myocardial ultrastructure in idiopathic hypertrophic subaortic stenosis: a study of operatively excised left ventricular outflow tract muscle in 14 patients. Circulation45, 769–792 (1972).

    PubMed  Google Scholar 

  10. Gay, W. A., E. A. Johnson: An anatomical evaluation of the myocardial length-tension diagram. Circulat. Res.21, 33–43 (1967).

    PubMed  Google Scholar 

  11. Glantz, S. A., W. W. Parmely: Factors which affect the diastolic pressure-volume curve. Circulat. Res.42, 171–180 (1978).

    PubMed  Google Scholar 

  12. Hanson, J., H. E. Huxley: Structural basis of contraction in striated muscle. Symp. Soc. Expl. Biol.9, 228–264 (1955).

    Google Scholar 

  13. Hess, O. M., J. Schneider, R. Koch, C. Bamert, J. Grimm, H. P. Krayenbuehl Diastolic function and myocardial structure in patients with myocardial hypertrophy. Special reference to normalized viscoelastic data. Circulation63, 360–371 (1981).

    PubMed  Google Scholar 

  14. Holubarsch, Ch., R. Jacob: Evaluation of elasticity by means of length-tension relationships in a model of isolated ventricular myocardium from rat and cat papillary muscle under conditions of contracture. Basic Res. Cardiol.73, 442–458 (1978).

    PubMed  Google Scholar 

  15. Holubarsch, Ch.: Contracture type and fibrosis type of decreased myocardial distensibility. Different changes in elasticity of myocardium in hypoxia and hypertrophy. Basic. Res. Cardiol.75, 244–252 (1980).

    PubMed  Google Scholar 

  16. Holubarsch, Ch., Th. Holubarsch, R. Jacob, I. Medugorac, K.-U. Thiedemann: Passive elastic properties of myocardium in different models and stages of hypertrophy. In: Biology of Myocardial Hypertrophy and Failure. 323–336. Ed. N. R. Alpert, Raven Press (New York 1983).

    Google Scholar 

  17. Jacob, R., B. Brenner, G. Ebrecht, Ch. Holubarsch, I. Medugorac: Elastic and contractile properties of the myocardium in experimental cardiac hypertrophy of the rat. Methodological and pathophysiological considerations. Basic Res. Cardiol.75, 253–261 (1980).

    PubMed  Google Scholar 

  18. Jacob, R., G. Ebrecht, Ch. Holubarsch, G. Kissling, I. Medugorac, H. Rupp: Adaptive and pathological alterations in experimental cardiac hypertrophy. Advanc. Myocardiol.4, 55–77 (1983).

    Google Scholar 

  19. Jones, M., V. J. Ferrans, A. G. Morrow, W. C. Roberts: Ultrastructure of crista supraventricularis muscle in patients with congenital heart diseases associated with right ventricular outflow tract obstruction. Circulation51, 39–67 (1975).

    PubMed  Google Scholar 

  20. Kissling, G., T. Gassenmaier, M. F. Wendt-Gallitelli, R. Jacob: Pressure volume relations, elastic modulus, and contractile behaviour of the hypertrophied left ventricle of rats with Goldblatt II hypertension. Pflügers Arch.369, 213–221 (1977).

    Google Scholar 

  21. Kranz, D., I. Fuhrmann: Das Anpassungs-Wachstum des Herzens nach einseitiger Nephrektomie. Deutsches Gesundheitswesen30, 648–650 (1975).

    Google Scholar 

  22. Kranz, D., D. Kunde, I. Fuhrmann: Die Reaktion der Herzmuskel- und Herzbindegewebszellen beim Anpassungswachstum. Deutsches Gesundheitswesen30, 1594–1599 (1975).

    Google Scholar 

  23. Lompre, A. M., K. Schwartz, A. d'Albis, G. Lacombe, N. van Thiem, B. Swynghedauw: Myosin isoenzyme redistribution in chronic heart overload. Nature282, 105–107 (1979).

    PubMed  Google Scholar 

  24. Maron, B. J., V. J. Ferrans, W. C. Roberts: Ultrastructural features of degenerated cardiac muscle cells in patients with hypertrophy. Amer. J. Pathol.79, 387–434 (1975).

    Google Scholar 

  25. Maron, B. J., V. J. Ferrans, W. C. Roberts: Myocardial ultrastructure in patients with chronic aortic valve disease. Amer. J. Cardiol.35, 725–739 (1975).

    PubMed  Google Scholar 

  26. Maruyama, K., R. Natori, Y. Nonomura: New elastic protein from muscle. Nature262, 58–60 (1976).

    PubMed  Google Scholar 

  27. Matsubara, I., B. M. Millmann: X-ray diffraction pattern from mammalian heart muscle. J. Physiol. (Lond.)230, 62P-63P (1972).

    Google Scholar 

  28. Maughan, D. M., E. Low, R. Litten, III, J. Brayden, N. R. Alpert: Calcium-activated muscle from hypertrophied rabbit hearts. Mechanical and correlated biochemical changes. Circulat. Res.44, 279–287 (1979).

    PubMed  Google Scholar 

  29. Medugorac, I.: Myocardial collagen in different forms of heart-hypertrophy in the rat. Res. Exp. Med. (Berl.)177, 201–211 (1980).

    Google Scholar 

  30. Medugorac, I.: Collagen content in different areas of normal and hypertrophied rat myocardium. Cardiovasc. Res.14, 551–554 (1980).

    PubMed  Google Scholar 

  31. Mirsky, I., R. F. Janz, B. R. Kubert, B. Korecky, G. C. Taichman: Passive elastic wall stiffness of the left ventricle: A comparison between linear theory and large deformation theory. Bull. Math. Biol.38, 239–249 (1976).

    PubMed  Google Scholar 

  32. Mirsky, I., A. Pasipoularides: Elastic properties of normal and hypertrophied cardiac muscle. Fed. Proc.39, 156–161 (1980).

    PubMed  Google Scholar 

  33. Mirsky, I.: Assessment of passive elastic stiffness of cardiac muscle. Mathematical concepts, physiologic and clinical considerations, directions of future research. Progr. Cardiovasc. Dis.18, 277–308 (1976).

    Google Scholar 

  34. Moore, R. D., M. D. Schoenberg, S. Koltsky: Cardiac lesions in experimental hypertension. Arch. Pathol.75, 28–44 (1963).

    PubMed  Google Scholar 

  35. Peterson, K. L., J. Tsuji, A. Johnson, J. DiDonna, M. LeWinter: Diastolic ventricular pressure-volume and stress-strain relations in patients with valvular aortic stenosis and left ventricular hypertrophy. Circulation58, 77–89 (1978).

    PubMed  Google Scholar 

  36. Skosey, J. L., R. Zak, A. F. Martin, V. Aschenbrenner, M. Rabinowitz: Biochemical correlates of cardiac hypertrophy. V. Labeling of collagen, myosin and nuclear DNA during experimental myocardial hypertrophy in the rat. Circulat. Res.31, 145–157 (1972).

    PubMed  Google Scholar 

  37. Sonnenblick, E. H., C. L. Skelton: Reconsideration of the ultrastructural basis of cardiac length-tension relations. Circulat. Res.35, 517–526 (1974).

    PubMed  Google Scholar 

  38. Staubesand, J., G. Adelmann, F. Steel: Matrix lysosomes and medial dysplasia: an ultrastructural and morphometric investigation into “load-failure” of haemodynamic or metabolic origin. Fol. Angiol.28, 9–17 (1980).

    Google Scholar 

  39. Staubesand, J., N. Fischer: The ultrastructural characteristics of abnormal collagen fibrils in various organs. Connect. Tiss. Res.7, 213–217 (1980).

    Google Scholar 

  40. Stegemann, H., K. Stalder: Determination of hydroxyproline. Clin. Chim. Acta18, 267–273 (1967).

    PubMed  Google Scholar 

  41. Thiedemann, K. U.: Ultrastructure in chronic ischemia. Studies in human hearts. In: The pathophysiology of myocardial perfusion. 675–716. Ed.: W. Schaper, Elsevier, North-Holland, Biochem. Press (Amsterdam 1979).

    Google Scholar 

  42. Thiedemann, K. U., V. J. Ferrans: Left atrial ultrastructure in mitral valvular disease. Amer. J. Pathol.89, 575–604 (1977).

    Google Scholar 

  43. Weibel, E. R., H. Elias: Quantitative methods in morphology. 87–148. Springer-Verlag (Berlin 1967).

    Google Scholar 

  44. Wand-Gallitelli, M. F., G. Ebrecht, R. Jacob: Morphological alterations and their functional interpretation in the hypertrophied myocardium of Goldblatt hypertensive rats. J. Molec. Cell. Cardiol.11, 275–287 (1979).

    Google Scholar 

  45. Wikman-Coffelt, J., W. W. Parmley, D. T. Mason: The cardiac hypertrophy process: Analyses of factors determining pathological vs. physiological development. Circulat. Res.45, 697–707 (1979).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiedemann, K.U., Holubarsch, C., Medugorac, I. et al. Connective tissue content and myocardial stiffness in pressure overload hypertrophy A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Res Cardiol 78, 140–155 (1983). https://doi.org/10.1007/BF01906668

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906668

Key words

Navigation