Basic Research in Cardiology

, Volume 70, Issue 5, pp 467–479 | Cite as

Subunits of myosin

Relations to ATPase activity and mechanical function of muscle
  • I. Medugorac
Editorial
  • 98 Downloads

Summary

Under certain conditions the specific ATPase activity of myosin of a given muscle can be altered. The cause for this alteration can only lie in the myosin molecule itself. To produce an enzymatic activity of myosin, an interaction between their light and heavy chains is necessary. However, the specific activity appears to be determined mainly by light chains. Hence, one ought also to look for a basis of the changed activity in changes of the subunits of myosin. There are strong indications that the alterations in specific activity are accompanied by changes in the relative stoichiometry of the essential light chains of the respective myosin preparation. Probably there are different populations of myosin molecules in any given myosin preparation. They differ in their pattern of subunits. The specific activity of a given kind of myosin seems to be determined by the combination of their light chains. Thus, a close correlation exists between these two properties of myosin (ATPase activity and structure of its molecule).

There are sufficient indications, that these two properties of myosin correlate also with the mechanical capability of the corresponding muscle. Particularly the results of cross innervation studies demonstrate a close correlation between these three properties in skeletal muscle.

The single subunits of myosin are produced and degraded independently and at heterogeneous rates. The synthesis of these subunits is significantly accelerated in response to work overload. Thus, it is quite likely that the individual chains are non-coordinately synthesized, giving rise to variations in the relationship of different molecule types of myosin with different specific ATPase activity. Hence, the control mechanism to synthesize the individual subunits could also be the regulative mechanism to produce a myosin of the specific ATPase activity appropriate to the activity pattern of tissue.

Abbreviations

ATPase

adenosine triphosphatase

F-myosin

myosin from fast skeletal muscle

S-myosin

myosin from slow skeletal muscle

G-myosin

myosin from cardiac muscle

LMM

light meromyosin

HMM

heavy meromyosin

HMM S-1 and S-2

HMM subfragment-1 and-2

HC

heavy chains

LC (1, 2, 3)

light chains (1, 2, 3)

DTNB

5,5-dithiobis (2-nitrobenzoic acid)

Untereinheiten des Myosinmoleküls

Beziehungen zur ATPase-Aktivität und mechanischen Funktion des Muskels

Zusammenfassung

Unter bestimmten Bedingungen kann sich die spezifische ATPase-Aktivität vom Myosin eines Muskels ändern. Die Ursache für diese Variationen kann nur im Myosinmolekül selbst liegen. Für die enzymatische Aktivität von Myosin ist eine Wechselwirkung zwischen seinen leichten und schweren Ketten erforderlich. Es scheint jedoch, daß die spezifische Aktivität nur von den leichten Ketten bestimmt wird. Daher ist auch die Grundlage für Variationen dieser Aktivität in Änderungen dieser Untereinheiten zu suchen. Es gibt sichere Hinweise dafür, daß die Änderungen der spezifischen Aktivität von Änderungen in der relativen Stöchiometrie der essentiellen Ketten begleitet werden. Vermutlich besitzt jede Myosinpräparation verschiedene Populationen von Myosinmolekülen, die sich im Muster ihrer leichten Ketten unterscheiden. Die spezifische Aktivität eines bestimmten Molekültyps wird wahrscheinlich durch die Kombination seiner leichten Ketten bestimmt. So besteht zwischen diesen beiden Eigenschaften des Myosins (ATPase-Aktivität und Molekülstruktur) eine enge Korrelation. Es gibt genügend Hinweise dafür, daß diese beiden Eigenschaften von Myosin auch mit dem mechanischen Leistungsvermögen des entsprechenden Muskels korrelieren. Eine enge Korrelation dieser Parameter wird am besten durch die Ergebnisse von Kreuzinnervationsversuchen demonstriert. Die einzelnen Untereinheiten von Myosin werden separat und in verschiedenen Raten synthetisiert und abgebaut. Durch Mehrbelastung des Muskels wird die Synthese dieser Untereinheiten signifikant beschleunigt. Daher ist es leicht möglich, daß die einzelnen Ketten nun nicht koordiniert synthetisiert werden. Daraus können Verschiebungen in den Relationen verschledener Molekültypen mit verschiedenen ATPase-Aktivitäten entstehen. Der Mechanismus, welcher die Synthese der einzelnen Komponenten kontrolliert, könnte also zugleich der regulative Mechanismus sein, der die spezifische ATPase-Aktivität steuert und sie den Erfordernissen des entsprechenden Gewebes anpaßt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpert, N. R., M. S. Gordon, Amer. J. Physiol.202, 940–946 (1962).PubMedGoogle Scholar
  2. 2.
    Aras, A., G. Hass, (Abstr.) Fed. Proc.21, 132 (1962).Google Scholar
  3. 3.
    Bárány, M., J. gen. Physiol.50, 197–218 (1967).CrossRefPubMedGoogle Scholar
  4. 4.
    Bárány, M., R. I. Close, J. Physiol.213, 455–474 (1971).PubMedGoogle Scholar
  5. 5.
    Bárány, M., T. E. Conover, L. H. Schliselfeld, E. Gaetjens, M. Goffart, Europ. J. Biochem.2, 156–164 (1967).CrossRefPubMedGoogle Scholar
  6. 6.
    Bhan, A. K., J. Scheuer, Suppl. II Circulat.43 and44, II/132 (1971).Google Scholar
  7. 7.
    Brivio, R. P., J. R. Florini, Res. Commun.44, 628–633 (1971).Google Scholar
  8. 8.
    Buller, A. J., W. F. H. M. Mommaerts, K. Seraydarian, J. Physiol.205, 581–597 (1969).PubMedGoogle Scholar
  9. 9.
    Chandler, B. M., E. H. Sonnenblick, J. F. Spann, Jr., P. E. Pool, Circulat. Res.21, 717–725 (1967).PubMedGoogle Scholar
  10. 10.
    Chung, C. S., E. G. Richards, H. S. Olcott, Biochemistry6, 3154–3161 (1967).CrossRefPubMedGoogle Scholar
  11. 11.
    Close, R., Nature206, 831–832 (1965).PubMedGoogle Scholar
  12. 12.
    Connell, J. J., H. S. Olcott, Arch. Biochem.94, 128–135 (1961).CrossRefPubMedGoogle Scholar
  13. 13.
    Dow, J., A. Stracher, Biochemistry10, 1316–1321 (1971).CrossRefPubMedGoogle Scholar
  14. 14.
    Dreizen, P., L. C. Gershman, P. P. Trotta, A. Stracher, J. gen. Physiol.50, 85–118 (1967).CrossRefPubMedGoogle Scholar
  15. 15.
    Dreizen, P., L. C. Gershman, Biochem.9, 1688–1693 (1970).CrossRefGoogle Scholar
  16. 16.
    Dreizen, P., D. J. Hartshorne, A. Stracher, J. biol. Chem.241, 443–448 (1966).PubMedGoogle Scholar
  17. 17.
    Dreizen, P., D. H. Richards, Cold Spr. Harb. Symp. quant. Biol.27, 29–45 (1972).Google Scholar
  18. 18.
    Frederiksen, D. W., A. Holtzer, Biochem.7, 3935–3950 (1968).CrossRefGoogle Scholar
  19. 19.
    Gaetjens, E., K. Bárány, G. Bailin, H. Oppenheimer, M. Bárány, Arch. Biochem.123, 82–96 (1968).CrossRefPubMedGoogle Scholar
  20. 20.
    Gazith, J., S. Himmelfarb, W. F. Harrington. J. biol. Chem.245, 15–22 (1970).PubMedGoogle Scholar
  21. 21.
    Gershman, L. C., P. Dreizen, Biochem.9, 1677–1687 (1970).CrossRefGoogle Scholar
  22. 22.
    Gershman, L. C., P. Dreizen, A. Stracher, Proc. nat. Acad. Sci. (Wash.)56, 966–973 (1966).Google Scholar
  23. 23.
    Gershman, L. C., A. Stracher, P. Dreizen, Subunit interactions of myosin. Symposium of fibrous proteins Australia, Grewther, W. G., Ed., Sydney, Australia. p. 150 (1968).Google Scholar
  24. 24.
    Gershman, L. C., A. Stracher, P. Dreizen, J. biol. Chem.244, 2726–2736 (1969).PubMedGoogle Scholar
  25. 25.
    Gröschel-Stewart, U., Biochem. biophys. Acta229, 322–334 (1971).PubMedGoogle Scholar
  26. 26.
    Gröschel-Stewart, U., F. Turba, Biochem. Z.337, 104–108 (1963).PubMedGoogle Scholar
  27. 27.
    Hardy, M. F., S. V. Perry, Nature (Lond.)223, 300–302 (1969).Google Scholar
  28. 28.
    Hardy, M. F., I. Harris, S. V. Perry, D. Stone, Biochem. J.117, 44P-45P (1970).Google Scholar
  29. 29.
    Hearn, G. R., P. D. Gollnick, Int. Z. angew. Physiol.19, 23–26 (1961).PubMedGoogle Scholar
  30. 30.
    Heywood, S. M., A. Rich, Biochem.59, 590–597 (1968).Google Scholar
  31. 31.
    Holtzer, A., S. Lowey, T. Schuster, In: The molecular basis of neoplasia, p. 259 (1962). University of Texas Press, Austin.Google Scholar
  32. 32.
    Holtzer, A., S. Lowey, J. Amer. chem. Soc.81, 1370–1377 (1959).CrossRefGoogle Scholar
  33. 33.
    Horvath, B. Z., E. Gaetjens, Biochim. biophys. Acta (Amst.)263, 779–793 (1972).Google Scholar
  34. 34.
    Huszar, G., M. Elzinga, Nature (Lond.)223, 834–835 (1969).Google Scholar
  35. 35.
    Kämmereit, A., I. Medugorac, E. Steil, R. Jacob, Basic Res. Cardiol.70, 595 (1975).Google Scholar
  36. 36.
    Katz, A. M., J. Pharmacol. exp. Ther.154, 558–565 (1966).PubMedGoogle Scholar
  37. 37.
    Katz, A. M., Amer. J. Physiol.212, 39–42 (1967).PubMedGoogle Scholar
  38. 38.
    Kendrick-Jones, J., S. V. Perry, Biochem. J.103, 207–214 (1967).PubMedGoogle Scholar
  39. 39.
    Kendrick-Jones, J., E. M. Szentkiralyi, A. G. Szent-Györgyi, Cold. Spr. Harb. Symp. quant. Biol.37, 47–53 (1972).Google Scholar
  40. 40.
    Kielley, W. W., W. F. Harrington, Biochim biophys. Acta (Amst.)41, 401–421 (1960).CrossRefGoogle Scholar
  41. 41.
    Kim, H. D., W. F. H. M. Mommaerts, Biochim. biophys. Acta (Amst.)245, 230–234 (1971).Google Scholar
  42. 42.
    Kimata, S., E. Morkin, Amer. J. Physiol.221, 1706–1713 (1971).PubMedGoogle Scholar
  43. 43.
    Kominz, D. R., W. R. Carroll, E. N. Smith, E. R. Mitchell, Arch. Biochem.79, 191–199 (1959).CrossRefGoogle Scholar
  44. 44.
    Kominz, D. R., E. R. Mitchell, T. Niheri, C. M. Kay, A. Biochemistry4, 2373–2382 (1965).CrossRefGoogle Scholar
  45. 45.
    Kuehl, W. M., R. S. Adeistein, Biochem. Biophys. Res. Commun.37, 59–65 (1969).CrossRefPubMedGoogle Scholar
  46. 46.
    Kuehl, W. M., R. S. Adelstein, Biochem. Biophys. Res. Commun.39, 956–964 (1970).CrossRefPubMedGoogle Scholar
  47. 47.
    Leger, J. J., B. Focant, Biochim. biophys. Acta (Amst.)328, 166–172 (1973).Google Scholar
  48. 48.
    Lobley, G. E., S. V. Perry, D. Stone, Nature (Lond.)231, 317–318 (1971).Google Scholar
  49. 49.
    Locker, R. H., Biochim. biophys. Acta (Amst.)20, 514–521 (1956).CrossRefGoogle Scholar
  50. 50.
    Locker, R. H., C. J. Hagyard, Arch. Biochem.120, 241–244 (1967).CrossRefPubMedGoogle Scholar
  51. 51.
    Locker, R. H., C. J. Hagyard, Arch. Biochem.120, 454–461 (1967).CrossRefPubMedGoogle Scholar
  52. 52.
    Locker, R. H., C. J. Hagyard, Arch. Biochem.127, 370–375 (1968).CrossRefPubMedGoogle Scholar
  53. 53.
    Low, R. B., J. N. Vournakis, A. Rich, Biochemistry10, 1813–1818 (1971).CrossRefPubMedGoogle Scholar
  54. 54.
    Lowey, S., Subunits in biological systems. Part A. In: Biological macromolecules5, New York (1971).Google Scholar
  55. 55.
    Lowey, S., C. Cohen, J. molec. Biol.4, 293–308 (1962).PubMedGoogle Scholar
  56. 56.
    Lowey, S., L. Goldstein, C. Cohen, S. M. Luck, J. molec. Biol.23, 287–304 (1967).PubMedGoogle Scholar
  57. 57.
    Lowey, S., J. C. Holt, Cold Spr. Harb. Symp. quant. Biol.37, 19–28 (1972).Google Scholar
  58. 58.
    Lowey, S., D. Risby, Nature (Lond.)234, 81–85 (1971).Google Scholar
  59. 59.
    Lowey, S., H. S. Slayter, A. G. Weeds, H. Backer, J. molec. Biol.42, 1–29 (1969).CrossRefPubMedGoogle Scholar
  60. 60.
    Lowey, S., L. A. Steiner, J. molec. Biol.65, 111–126 (1972).CrossRefPubMedGoogle Scholar
  61. 61.
    Luchi, R. J., E. M. Kritcher, J. Pharmacol. exp. Ther.158, 540–545 (1967).PubMedGoogle Scholar
  62. 62.
    Luchi, R. J., E. M. Kritcher, P. T. Thyrum, Circulat. Res.24, 513–519 (1969).PubMedGoogle Scholar
  63. 63.
    Medugorac, I., Experientia31, 941–942 (1975).PubMedGoogle Scholar
  64. 64.
    Medugorac, I., A. Kämmereit, R. Jacob, Hoppe-Seyler's Z. Physiol. Chem.356, 1161–1171.Google Scholar
  65. 65.
    Meerson, F. Z., Circulat. Res.25, Suppl. II, 82–163 (1969).Google Scholar
  66. 66.
    Meerson, F. Z., Der Zustand der Strukturproteine und der Myokardstrukturen bei der Hyperfunktion, Hypertrophie und Insuffizienz des Herzens. In: Hyperfunktion, Hypertrophie und Insuffizienz des Herzens. Berlin (1969).Google Scholar
  67. 67.
    Morkin, E., S. Kimata, J. J. Skillman, Circulat. Res.30, 690–702 (1972).PubMedGoogle Scholar
  68. 68.
    Morkin, E., Y. Yazakki, T. Katagiri, P. J. Laraia, Biochim. biophys. Acta (Amst.)324, 420–429 (1973).Google Scholar
  69. 69.
    Mueller, H., J. biol. Chem.239, 797–804 (1964).PubMedGoogle Scholar
  70. 70.
    Mueller, H., S. V. Perry, Biochem. J.80, 217–223 (1961).PubMedGoogle Scholar
  71. 71.
    Mueller, H., S. V. Perry, Biochem. J.85, 431–439 (1962).PubMedGoogle Scholar
  72. 72.
    Nebel, M. L., R. J. Bing, Arch. intern. Med.111, 190–195 (1963).PubMedGoogle Scholar
  73. 73.
    Oppenheimer, H., K. Bárány, G. Hamoir, J. Fenton, Arch. Biochem.120, 108–118 (1967).CrossRefPubMedGoogle Scholar
  74. 74.
    Oganessyan, S., T. Zaminian, N. Bay, V. Petrosian, A. Koschkarian, I. Martirosian, M. Eloyan, J. Mol. Cell. Cardiol.5, 1–24 (1973).CrossRefPubMedGoogle Scholar
  75. 75.
    Parterson, B., R. C. Strohman, Biochem.9, 4094–4105 (1970).CrossRefGoogle Scholar
  76. 76.
    Perry, S. V., Biochem. J.74, 94 (1960).PubMedGoogle Scholar
  77. 77.
    Perry, S. V., Biochemical adaptation during development and growth in skeletal muscle. In: The physiology and biochemistry of muscle as food. Vol.2, pp. 537–553 (1970).Google Scholar
  78. 78.
    Perrie, W. T., S. V. Perry, Biochem. J.119, 31–38 (1970).PubMedGoogle Scholar
  79. 79.
    Perrie, W. T., S. V. Perry, D. Stone, Biochem. J.113, 28P-29P (1969).Google Scholar
  80. 80.
    Rabinowitz, M., Amer. J. Cardiol.31, 202–210 (1973).CrossRefPubMedGoogle Scholar
  81. 81.
    Rawlinson, W. A., M. K. Gould, Biochem. J.73, 44–48 (1959).PubMedGoogle Scholar
  82. 82.
    Samaha, F. J., L. Guth, R. W. Albers, Exp. Neurol.27, 276–282 (1970).CrossRefPubMedGoogle Scholar
  83. 83.
    Samaha, F. J., L. Guth, R. W. Albers, J. biol. Chem.245, 219–224 (1970).PubMedGoogle Scholar
  84. 84.
    Sarkar, S., Cold Spr. Harb. Symp. quant. Biol.37, 14–17 (1972).Google Scholar
  85. 85.
    Sarkar, S., P. H. Cooke, Biochem. biophys. Res. Commun.41, 918–925 (1970).CrossRefPubMedGoogle Scholar
  86. 86.
    Schellman, J. A., C. G. Schellman, J. Polymer Sci.49, 129–151 (1961).CrossRefGoogle Scholar
  87. 87.
    Seagren, S. C., C. L. Skelton, P. E. Pool, Amer. J. Physiol.220, 847–851 (1971).PubMedGoogle Scholar
  88. 88.
    Syrový, I., E. Gutman, J. Melichna, Physiol. bohemoslov.21, 633–639 (1972).PubMedGoogle Scholar
  89. 89.
    Syrový, I., E. Gutman, Experientia (Basel)27, 248 (1971).Google Scholar
  90. 90.
    Slayter, H. S., S. Lowey, Proc. nat. Acad. Sci. (Wash.)58, 1611–1618 (1967).Google Scholar
  91. 91.
    Stracher, A., Biochem. biophys. Res. Commun.35, 519–525 (1969).CrossRefPubMedGoogle Scholar
  92. 92.
    Swynghedauw, B., C. Klotz, J. J. Leger, M. Preteseille, J. Mol. cell. Cardiol.5, 501–514 (1973).CrossRefPubMedGoogle Scholar
  93. 93.
    Tonomura, Y., P. Appel, M. Morales, II. Biochem.5, 515–521 (1966).CrossRefGoogle Scholar
  94. 94.
    Tonomura, Y., S. Tokura, K. Sekiya, J. biol. Chem.237, 1074–1081 (1962).PubMedGoogle Scholar
  95. 95.
    Trayer, I. P., C. I. Harris, S. C. Perry, Nature (Lond.)217, 452–453 (1968).Google Scholar
  96. 96.
    Trayer, I. P., S. V. Perry, Biochem. Z.345, 87–100 (1966).Google Scholar
  97. 97.
    Trotta, P. P., P. Dreizen, A. Stracher, Proc. nat. Acad. Sci. (Wash.)61, 659–666 (1968).Google Scholar
  98. 98.
    Tsao, T. C., Biochim. biophys. Acta (Amst.)11, 368–382 (1953).CrossRefGoogle Scholar
  99. 99.
    Warren, J. C., L. Stowring, M. F. Morales, J. biol. Chem.241, 309–316 (1966).PubMedGoogle Scholar
  100. 100.
    Weber, K., M. Osborn, J. biol. Chem.244, 4406–4412 (1969).PubMedGoogle Scholar
  101. 101.
    Weeds, A. G., Nature (Lond.)223, 1362–1364 (1969).Google Scholar
  102. 102.
    Weeds, A. G., G. Frank, Cold Spr. Harb. Symp. quant. Biol.37, 9–14 (1972).Google Scholar
  103. 103.
    Weeds, A. G., B. S. Hartley, Biochem. J.107, 531–548 (1968).PubMedGoogle Scholar
  104. 104.
    Weeds, A. G., S. Lowey, J. molec. Biol.61, 701–725 (1971).CrossRefPubMedGoogle Scholar
  105. 105.
    Weeds, A. G., B. Pope, Nature (Lond.)234, 85–88 (1971).Google Scholar
  106. 106.
    Weltlaufer, D. B., J. J. Edsall, Biochim. biophys. Acta (Amst.)43, 132–134 (1960).CrossRefGoogle Scholar
  107. 107.
    Wikman-Coffelt, J., R. Zelis, C. Fenner, D. T. Mason, Prep. Biochem.3, 439–449 (1973).PubMedGoogle Scholar
  108. 108.
    Wikman-Coffelt, J., R. Zelis, C. Fenner, D. T. Mason, Biochem. biophys. Res. Commun.51, 1097–1104 (1973).CrossRefPubMedGoogle Scholar
  109. 109.
    Wikman-Coffelt, J., R. Zelis, D. T. Mason, J. biol. Chem.248, 5206–5207 (1973).PubMedGoogle Scholar
  110. 110.
    Wikman-Coffelt, J., R. Zelis, C. Fenner, D. T. Mason, Analyses of the substructure and kinetics of myosin from normal and hypertrophied but non-failing right ventricles of canine heart. In: Myocardial cell damage. VI. Ann. Meet. of the Intern. Study Group for Res. in Cardiac Metabolism. Freiburg (1973) (in press).Google Scholar
  111. 111.
    Wilkerson, J. E., E. Evonuk, J. appl. Physiol.30, 328–330 (1971).PubMedGoogle Scholar
  112. 112.
    Woods, E. F., S. Himmelfarb, W. F. Harrington, J. biol. Chem.238, 2374–2385 (1963).PubMedGoogle Scholar
  113. 113.
    Yazaki, Y., S. Mochinaga, M. S. Raben, Biochim. biophys. Acta (Amst.)328, 464–469 (1973).Google Scholar
  114. 114.
    Young, D. M., S. Himmelfarb, W. F. J. Harrington, J. biol. Chem.239, 2822–2829 (1964).PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1975

Authors and Affiliations

  • I. Medugorac
    • 1
  1. 1.Institute of Physiology, Department IIUniversity of Tübingen(Germany)

Personalised recommendations