Skip to main content
Log in

Sympathetic-parasympathetic interactions on the ventricular myocardium: possible role of cyclic nucleotides

Sympathisch-parasympathische Interaktionen am Ventrikelmyokard: Mögliche Rolle zyklischer Nukleotide

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Vagal effects on the mammalian ventricular myocardium vary greatly in different species and depend on sympathetic influences. After chemical sympathectomy it can be demonstrated that acetylcholine antagonizes the positive inotropic action of catecholamines on cat papillary muscles in a noncompetitive way. It is generally accepted that adenosine-3′5′-monophosphate mediates the effects of catecholamines in the myocardial cell.George et al. (1970) suggested guanosine-3′5′-monophosphate to be a mediator of negative inotropic effects, because perfusion of rat hearts with acetylcholine causes an elevated content of this cyclic nucleotide. There are various findings in the literature, which lead to the supposition that the myocardial contractility may be regulated in an antagonistic manner by the two cyclic nucleotides, whereas a possible central role of the adenosine-3′5′-monophosphate phosphodiesterase must be discussed.

Zusammenfassung

Im Säugerventrikelmyokard sind vagale Effekte abhängig von sympathischen Einflüssen und variieren stark bei verschiedenen Spezies. Nach chemischer Sympathektomie läßt sich zeigen, daß die positiv inotrope Wirkung von Katecholaminen am Katzenpapillarmuskel in nichtkompetitiver Weise von Acetylcholin gehemmt wird. Es wird allgemein angenommen, daß Katecholamine ihre Wirkung an der Myokardzelle über zyklisches Adenosin-3′5′-monophosphat ausüben. VonGeorge u. a. (1970) wurde vermutet, daß negativ inotrope Effekte von Acetylcholin über zyklisches Guanosin-3′5′-monophosphat vermittelt werden, da der Gehalt dieses zyklischen Nukleotids in Rattenherzen nach Perfusion mit Acetylcholin erhöht ist. Es werden verschiedene Beispiele aus der Literatur angeführt, die die Annahme nahelegen, daß die Myokardkontraktilität in gegenwobei eine zentrale Rolle der Adenosin-3′5′-monophosphat-phosphodiesterase zu diskutieren ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Beavo, J. A., J. G. Hardman, andE. W. Sutherland, Stimulation of adenosine 3′5′-monophosphate hydrolysis by guanosine 3′5′-monophosphate. J. Biol. Chem.246, 3841–3946 (1971).

    PubMed  Google Scholar 

  • Böhme, E., Guanyl-Cyclase. Bildung von Guanosin-3′5′-monophosphat in Niere und anderen Geweben der Ratte. Eur. J. Bioch.14, 422 bis 429 (1970).

    Google Scholar 

  • Bolton, T. B., Intramural nerves in the ventricular myocardium of the domestic fowl and other animals. Brit. J. Pharmacol.31, 253–268 (1967).

    Google Scholar 

  • Epstein, S. E., G. S. Levey, andC. L. Skelton, Adenyl cyclase and cyclic AMP. Biochemical links in the regulation of myocardial contractility. Circulation43, 437–450 (1971).

    PubMed  Google Scholar 

  • Estensen, R. D., H. R. Hill, P. G. Quie, N. Hogan, andN. D. Goldberg, Cyclic GMP and cell movement. Nature345, 458–460 (1973).

    Google Scholar 

  • Ferendelli, J. A., A. L. Steiner, D. B. McDougal, andD. M. Kipnis, The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex. Biochem. Biophys. Res. Com.41, 1061–1067 (1970).

    Article  PubMed  Google Scholar 

  • George, W. J., J. B. Polson, A. D. O'Toole, andN. D. Goldberg, Elevation of guanosine 3′5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc. Nat. Acad. Sci.66, 398–403 (1970).

    PubMed  Google Scholar 

  • George, W. J., L. J. Ignarro, andL. E. White, acetylcholine stimulation of cardiac guanyl cyclase. In: Myocardial cell damage. VI. Annual meeting of the international study group for research in cardiac metabolism. 25.–28. 9. 1973 in Freiburg/Br. (1973 a).

  • George, W. J., R. D. Wilkerson, andP. J. Kadowitz, Influence of acetylcholine on contractile force and cyclic nucleotide levels in the isolated perfused rat heart. J. Pharmacol. Exp. Ther.184, 228–235 (1973b).

    PubMed  Google Scholar 

  • Goldberg, N. D., S. B. Dietz, A. D. O'Toole, Cyclic guanosine 3′5′-monophosphate in mammalian tissues and urine. J. Biol. Chem.244, 4458–4466 (1969).

    PubMed  Google Scholar 

  • Goren, E. N., andO. M. Rosen, The effect of nucleotides and a nondialyzable factor on the hydrolysis of cAMP by a cyclic nucleotide phosphodiesterase from beef heart. Arch. Bioch. Biophys.142, 720–723 (1971).

    Article  Google Scholar 

  • Hadden, J. W., E. M. Hadden, M. K. Haddox, andN. D. Goldberg, Guanosine 3′5′-monophosphate: A possible mediator of mitogenic influences in lymphocytes. Proc. Nat. Acad. Sci.69, 3024–3027 (1972).

    PubMed  Google Scholar 

  • Hardman, J. G., G. A. Robison, andE. W. Sutherland, Cyclic nucleotides. Ann. Rev. Physiol.33, 311–336 (1971).

    Article  Google Scholar 

  • Hardman, J. G., andE. W. Sutherland, Guanyl Cyclase, an enzyme catalyzing the formation of guanosine 3′5′-monophosphate from guanosine triphosphate. J. Biol. Chem.244, 6363–6370 (1969).

    PubMed  Google Scholar 

  • Harris, D. N., M. Chasin, M. B. Phillips, H. Goldenberg, S. Samaniego, andS. M. Hess, Effect of cyclic nucleotides on activity of cyclic 3′5′-adenosine monophosphate phosphodiesterase. Biochem. Pharmacol..22, 221–228 (1973).

    PubMed  Google Scholar 

  • Ignarro, L. J., L. E. White, R. D. Wilkerson, andE. J. George, Cardiac guanyl cyclase: stimulation by acetylcholine and calcium. Circulat. Res.48 (Suppl. IV), 12 (Abstr.) (1973).

    Google Scholar 

  • Ignarro, L. J., N. Krassikoff, andJ.Slywka, Release of enzymes from a rat liver lysosome fraction: inhibition by catecholamines and cyclic 3′5′-adenosine monophosphate, stimulation by cholinergic agents and cyclic 3′5′-guanosine monophosphate. J. Pharmacol. Exp. Ther.186, 86–99 (1973).

    PubMed  Google Scholar 

  • Ignarro, L. J., Possible regulation of inflammatory process by the autonomic nervous system. Nature (New Biol.)245, 151–153 (1973).

    Google Scholar 

  • Illiano, G., G. P. E. Tell, M. I. Siegel, andP. Cuatrecasas, Guanosine 3′5′-cyclic monophosphate and the action of insulin and acetylcholint. Proc. Nat. Aca. Sci. U.S.A.70, 2443–2447 (1973).

    Google Scholar 

  • Ishikawa, E., S. Ishikawa, J. W. Davis, andE. W. Sutherland, Determination of guanosine 3′5′-monophosphate in tissues and of guanyl cyclase in rat intestine. J. Biol. Chem.244, 6371–6376 (1969).

    PubMed  Google Scholar 

  • Jacob, R., H. F. Kienzle, G. Sieber, andE. Wille, Catecholamine antagonism of exogenous and endogenous acetylcholine in the mammalian ventricular myocardium. Proc. Internat. Congr. Physiol. Sci. Munich, Vol.9, R 814 (1971).

    Google Scholar 

  • Kaliner, M., R. P. Orange, andK. F. Austen, Immunological release of histamine and slow reacting substance of anaphylaxis from human lung. IV. Enhancement by cholinergic and alpha adrenergic stimulation. J. Exp. Med.136, 556–567 (1972).

    Article  PubMed  Google Scholar 

  • Kissling, G., K. Reutter, G. Sieber, andR. Jacob, Negative Inotropie von endogenem Acetylcholin beim Katzen- und Hünhnerventrikelmyocard. Pflügers Arch. ges. Physiol.333, 35–50 (1972).

    Article  Google Scholar 

  • Kolata, G. B., Cyclic GMP: cellular regulatory agent? Science182, 149–151 (1973).

    Google Scholar 

  • Kuo, J. F., andP. Greengard, Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3′5′-monophosphate. J. Biol. Chem.245, 2495–2498 (1970).

    Google Scholar 

  • Kuo, J. F., T. P. Lee, P. L. Reyes, K. G. Walton, T. E. Donnelly, andP. Greengard, Cyclic nucleotide-dependent protein kinases. X. An assay method for the measurement of guanosine 3′5′-monophosphate in various biological materials and a study of agents regulating its level in heart and brain. J. Biol. Chem.247, 16–22 (1972).

    PubMed  Google Scholar 

  • Krause, E. G., W. Halle, andA. Wollenberger, Effect of cyclic GMP on cultured beating rat heart cells. Adv. Cyclic Nucleotide Res.1, 301–305 (1972).

    PubMed  Google Scholar 

  • Lee, T. P., J. F. Kuo, andP. Greengard, Regulation of myocardial cyclic AMP by isoproterenol, glucagon and acetylcholine. Biochem. Biophys. Res. Com.45, 991–997 (1971).

    Article  PubMed  Google Scholar 

  • Levy, M. N., Sympathetic-parasympathetic interactions in the heart. Circulat. Res.29, 437–445 (1971).

    PubMed  Google Scholar 

  • Manganiello, V., F. Murad, andM. Vaughan, Cyclic GMP (cG) and glycerol production by fat cells. Fed. Proc.28, 876 (Abstr.) (1969).

    Google Scholar 

  • Meinertz, T., H. Nawrath, andH. Scholz, Dibutyryl cyclic AMP and adrenaline increase contractile force and45Ca uptake in mammalian cardiac muscle. Naunyn-Schmiedeberg's Arch. Pharmacol.277, 107–112 (1973).

    Article  Google Scholar 

  • Muscholl, E., Cholinometric drug and release of the adrenergic transmitter. In:H. J. Schümann andG. Kroneberg (Ed.), Bayer-Symposium II. New aspects of storage and release mechanisms of catecholamines. p. 168–186 (Berlin-Heidelberg-New York 1970).

  • Pagliara, A. S., A. D. Goodman, Effect of 3′5′-cGMP and 3′5′-cIMP on production of glucose and ammonia by renal cortex. Am. J. Physiol.218, 1301–1306 (1970).

    PubMed  Google Scholar 

  • Puglisi, L., F. Berti, andG. C. Folco, Cyclic GMP interaction with the parasympathetic system of isolated rat stomach. Pharmacol. Res. Com.4, 227–235 (1972).

    Article  Google Scholar 

  • Rasmussen, H., Cell communication, calcium ion, and cyclic adenosine monophosphate. Science170, 404–412 (1970).

    PubMed  Google Scholar 

  • Schwegler, M., andR. Jacob, Catecholamine-antagonism of acetylcholine and dibutyryl cyclic GMP in the mammalian ventricular myocardium. In: Myocardial cell damage. VI. Annual meeting of the international study group for research in cardiac metabolism 25.–28. 9. 1973 in Freiburg/Br. (1973).

  • Sutherland, E. W., G. A. Robison, andR. W. Butcher, Some aspects of the biological role of adenosine 3′5′-monophosphate (cyclic AMP). Circulation37, 279–306 (1968).

    Google Scholar 

  • Yamashita, K., andJ. B. Field, Elevation of cyclic guanosine 3′5′-monophosphate levels in dog thyroid slices caused by acetylcholine and sodium fluoride. J. Biol. Chem.247, 2062–2066 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 figures

Supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwegler, M. Sympathetic-parasympathetic interactions on the ventricular myocardium: possible role of cyclic nucleotides. Basic Res Cardiol 69, 215–221 (1974). https://doi.org/10.1007/BF01906202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906202

Navigation