Skip to main content
Log in

Use of 1-anilino-8-naphthalene-sulfonate as a probe of gastric vesicle transport

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The interaction of 1-anilino-8-naphthalene-sulfonate (ANS) with vesicles derived from hog fundic mucosa was studied in the presence of valinomycin and with the addition of ATP. Evidence was found for two classes of sites, those rapidly accessible to ANS with aK D of 7.5 μm and those slowly accessible, but rapidly accessed in the presence of valinomycin with aK D of 2.5 μm. ATP transiently increases the quantum yield of the latter ANS binding sites only in the presence of valinomycin, but does not alter the number ofK D of those sites. The time course of this increase correlates with H+ uptake and Rb+ extrusion by those vesicles and H+ carriers such as tetrachlorsalicylanilide or nigericin abolish the ATP response. With ATP addition in the presence of SC14N and valinomycin there is transient uptake of SCN. It is concluded that ANS is acting as a probe of a structural change dependent on a potential and H+ gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzi, A., Chance, B., Radda, G.K., Lee, C.P. 1969a. A fluorescence probe of energy dependent structure changes in fragmented membranes.Proc. Nat. Acad. Sci. USA 62:612

    PubMed  Google Scholar 

  • Azzi, A., Gherardini, P., Santato, P. 1971. Fluorochrome interaction with the mitochondrial membrane; the effect of energy conservation.J. Biol. Chem. 246:2035

    Google Scholar 

  • Azzi, A., Fleischer, S., Chance, B. 1969b. Cytochromec phospholipid interaction: Structural transitions associated with valency changes.Biochem. Biophys. Res. Commun. 36:322

    Article  PubMed  Google Scholar 

  • Bakker, E.P., Van Dam, K. 1974. The influence of diffusion potentials across liposomal membranes on the fluorescence intensity of 1-anilino-naphthalene-8-sulphonate.Biochim. Biophys. Acta 339:157

    Google Scholar 

  • Brocklehurst, J.R., Freedman, R.B., Hancock, D.J., Radda, G.K. 1970. Membrane studies with polarity-dependent and excimer-forming fluorescent probes.Biochem. J. 116:721

    PubMed  Google Scholar 

  • Chance, B. 1970. Fluorescent probe environment and the structural and charge changes in energy coupling of mitochondrial membranes.Proc. Nat. Acad. Sci. USA 67:560

    PubMed  Google Scholar 

  • Chance, B., Lee, C. 1969. Comparison of fluorescence probe and light-scattering readout of structural states of mitochondrial membrane fragments.FEBS Lett. 4:181

    Article  PubMed  Google Scholar 

  • Feinstein, M.B., Felsenfeld, H. 1971. The detection of ionophorous antibiotic-cation complexes in water with fluorescent probes.Proc. Nat. Acad. Sci. USA 68:2037

    PubMed  Google Scholar 

  • Forte, J.G., Ganser, A., Beesley, R., Forte, T.M. 1975. Unique enzymes of purified microsomes from pig fundic mucosa; K+-stimulated adenosine triphosphate and K+-stimulated pNPPase.Gastroenterology 69:175

    PubMed  Google Scholar 

  • Forte, J.G., Ganser, A.L., Tanisawa, A.S. 1974. The K+-stimulated ATPase system of microsomal membranes from gastric oxyntic cells.Ann. N.Y. Acad. Sci. 242:255

    PubMed  Google Scholar 

  • Fortes, P.A.G. 1976. Nanosecond fluorescence spectroscopy of biological membranes.In: Mitochondria: Bioenergetics, Biogenesis and Membrane Structure. Packer and Gomez-Puyou, editors. Academic Press, N.Y., pp. 327–348

    Google Scholar 

  • Friedman, R.B., Radda, G.K. 1969. The interaction of 1-anilino-8-naphthalene sulfonate with erythrocyte membranes.FEBS Lett. 3:150

    Article  PubMed  Google Scholar 

  • Ganser, A.L., Forte, J.G. 1973a. K+ stimulated ATPase in purified microsomes of bullfrog oxyntic cells.Biochim. Biophys. Acta 307:169

    PubMed  Google Scholar 

  • Ganser, A.L., Forte, J.G. 1973b. Ionophoretic stimulation of K+-ATPase of oxyntic cell microsomes.Biochem. Biophys. Res. Commun. 54:690

    Article  PubMed  Google Scholar 

  • Jasaitis, A.A., Kuliene, V.V., Skulachev, V.P. 1971. Anilinonaphthalenesulfonate fluorescence changes induced by non-enzymatic generation of membrane potential in mitochondria and submitochondrial particles.Biochim. Biophys. Acta 234:177

    PubMed  Google Scholar 

  • Lee, J., Simpson, G., Scholes, P. 1974. An ATPase from dog gastric mucosa: Changes of outer pH in suspensions of membrane vesicles accompanying ATP hydrolysis.Biochem. Biophys. Res. Commun. 60:825

    PubMed  Google Scholar 

  • Markin, V.S., Sokolov, V.S., Boguslavsky, L.I., Jaguzhinsky, L.S. 1975. Nigericin-induced charge transfer across membranes.J. Membrane Biol. 25:23

    Article  Google Scholar 

  • Masotti, L.F., Long, M.M., Sachs, G., Urry, D.W. 1972. The effect of ATP on the CD spectrum of membrane fraction from oxyntic cells.Biochim. Biophys. Acta 255:420

    PubMed  Google Scholar 

  • Rubalcava, B., deMunoz, D.M., Gitler, C. 1969. Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes.Biochemistry 8:2742

    PubMed  Google Scholar 

  • Saccomani, G., Stewart, H.B., Shaw, D., Lewin, M., Sachs, G. 1977. Fractionation and purification of K+ ATPase containing vesicles by zonal centrifugation and free flow electrophoresis technique.Biochim. Biophys. Acta (In press)

  • Saccomani, G., Shah, G., Spenney, J.G., Sachs, G. 1975. Characterization of gastric mucosal membranes. VIII. The localisation of peptides by iodination and phosphorylation.J. Biol. Chem. 250:4802

    PubMed  Google Scholar 

  • Sachs, G., Rabon, E., Chang, H., Schackmann, R., Lewin, M., Saccomani, G. 1976. A nonelectrogenic H+ pump in plasma membranes of hog stomach.J. Biol. Chem. 251:7690

    PubMed  Google Scholar 

  • Sachs, G., Saccomani, G., Rabon, E., Sarau, H.M. 1975. Redox and ATP in acid secretion.Ann. N.Y. Acad. Sci. 264:456

    PubMed  Google Scholar 

  • Spenney, J.G., Saccomani, G., Spitzer, H.L., Tomana, M., Sachs, G. 1974a. Characterization of gastric mucosal membranes; composition of gastric cell membranes and polypeptide fractionation using ionic and nonionic detergents.Arch. Biochem. Biophys. 161:456

    Article  PubMed  Google Scholar 

  • Spenney, J.G., Strych, A., Price, A.H., Helander, H.F., Sachs, G. 1974b. Preparation of gastric cell membranes by zonal density gradient centrifugation.Method. Dev. Biochem. 4:309

    Google Scholar 

  • Stryer, L. 1965. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin; a fluorescent probe of non-polar binding sites.J. Molec. Biol. 13:482

    PubMed  Google Scholar 

  • Tanisawa, A.S., Forte, J.G. 1971. Phosphorylated-intermediate of microsomal ATPase from rabbit gastric mucosa.Arch. Biochem. Biophys. 147:165

    Article  PubMed  Google Scholar 

  • Vanderkooi, J.M., Martonosi, A. 1971. Sarcoplasmic reticulum. XII. The interaction of 8-anilino-1-naphthalene sulfonate with skeletal muscle microsomes.Arch. Biochem. Biophys. 144:87

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, M., Saccomani, G., Schackmann, R. et al. Use of 1-anilino-8-naphthalene-sulfonate as a probe of gastric vesicle transport. J. Membrain Biol. 32, 301–318 (1977). https://doi.org/10.1007/BF01905224

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01905224

Keywords

Navigation