Journal of thermal analysis

, Volume 36, Issue 3, pp 1025–1032 | Cite as

Foundations of thermo-dielectrical analysis

Part I. Cationic polarization in zeolites
  • R. Roque-Malherbe
  • M. Hernandez-Velez


The method of thermodielectrical analysis registers in its thermogram a low temperature effect (50–350°) related with the polarization of water or other sorbed phase and cationic polarization, and a high temperature effect (400–900°) which is fundamentally related with cationic conduction. In the present report with the help of the measurement of the dielectrical permittivity of powders of homoionic zeolites was shown the role of cationic polarization in the determination of the intensity of the first thermal effect registered in thermodielectrical analysis.


Polymer Physical Chemistry Inorganic Chemistry Zeolite Thermal Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Mittels thermodielektrischer Analyse kann im Thermogramm ein Niedrigtemperatureffekt (50–350°C), verbunden mit der Polarisation des Wassers oder anderer absorbierter Phasen und der kationischen Polarisation, und ein Hochtemperatureffekt (400–900°C) festgehalten werden, welcher grundlegend mit der Kationenleitung in Verbindung gebracht werden kann. In dieser Arbeit wird mittels der Messung der Dielektrizitätskonstante von homoionischen Zeolithpulvern die Rolle der kationischen Polarisierung bei der Bestimmung der Intensität des bei der thermodielektrischen Analyse registrierten ersten thermischen Effektes gezeigt.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Montes, R. Roque-Malherbe and E. d. Shchukin, J. Thermal Analysis, 31 (1986) 41.Google Scholar
  2. 2.
    R. Roque-Malherbe and A. Montes, J. Thermal Analysis, 31 (1986) 517.Google Scholar
  3. 3.
    R. Roque-Malherbe, C. de las Pozas and J. Castillo, J. Thermal Anal., 31 (1987) 321.Google Scholar
  4. 4.
    M. Carreras, R. Roque-Malherbe and C. de las Pozas, J. Thermal Anal., 32 (1987) 1271.Google Scholar
  5. 5.
    R. Roque-Malherbe, C. de las Pozas and M. Carreras, J. Thermal Anal., 34 (1988) 1113.Google Scholar
  6. 6.
    J. A. Alonso, R. Roque-Malherbe, C. Gonzales, C. de las Pozas, J. Thermal Anal., 34 (1988) 865.Google Scholar
  7. 7.
    N. Vega, R. Roque-Malherbe, and C. Gonzales, J. Thermal Anal., (in press)Google Scholar
  8. 8.
    C. de las Pozas, D. Diaz-Quintanilla, J. Perez-Pariente, R. Roque-Malherbe and M. Magi, Zeolites, 9 (1989) 33.Google Scholar
  9. 9.
    J. Fernandez-Bertran and R. Roque-Malherbe, Reactivity of Solids (submitted for pub.)Google Scholar
  10. 10.
    R. Roque-Malherbe, J. Onate and J. Fernandez-Bertran, in preparation.Google Scholar
  11. 11.
    M. Hernandez-Velez and R. Roque-Malherbe, Preprints of Poster Papers of the 7th Int. Zeolite Conf. Japan Association of Zeolites, Tokyo, 1986, p. 165.Google Scholar
  12. 12.
    M. Hernandez-Velez, Ph. D. Dissertation, National Cent. for Scientific Research, 1988.Google Scholar
  13. 13.
    M. Hernandez-Velez and R. Roque-Malherbe, Proceedings 6th Int. Symp. on Electrets, eds. D. K. Gas-Gupta and A. W. Patullo. IEEE Service Center, 455 Hoes Lane, Piscataway, N. J. 08854 USA, 1988, p. 576.Google Scholar
  14. 14.
    W. M. Meier and D. H. Olson, Atlas of Zeolite Structure Types, Butterworth, London, 1988.Google Scholar
  15. 15.
    W. J. Mortier, Compilation of Extrafrawork Sites in Zeolites, Guilford Butterworth, 1982.Google Scholar
  16. 16.
    C. Gonzales, R. Roque-Malherbe and E. D. Shchukin, J. Mat. Sci. Letters, 6 (1987) 604.Google Scholar
  17. 17.
    C. Gonzales and R. Roque-Malherbe, Acta Cryst. A 43 (1987) 622.Google Scholar
  18. 18.
    L. Lopez-Colado and R. Roque-Malherbe, Revista Varona VII. 15 (1985) 167.Google Scholar
  19. 19.
    R. Roque-Malherbe, Fisica-Quimica de las Zeolitas, ENPES, MES, 1988, p. 111.Google Scholar
  20. 20.
    W. Dietrich, P. Fulde and I. Peschel, Adv. Physics, 29 (1980) 527.Google Scholar
  21. 21.
    W. H. Hauffe and H. Gunsser, Z. Phys. Chem. Chemie Neue Folge, 104 (1977) 88.Google Scholar
  22. 22.
    R. A. Schoonheydt, Proc. 5th Int. Zeolite Conf. ed. L. V. C. Rees, Heyden, London, 1980, p. 242.Google Scholar
  23. 23.
    L. Cengeembre, J. C. Carru, A. Chapoton and V. Vandorpe, proc. 5th Int. Zeolite Conf., ed. L. V. C. Rees, Heyden. London, 1980, p. 253.Google Scholar
  24. 24.
    M. F. Rakitianskaya and B. M. Fedorov, Zh. Fiz. Xim. 2626 (1983).Google Scholar
  25. 25.
    M. D. Benadda, J. C. Carru and C. A. Druon, J. Phys. E. Sci. Inst., 15 (1982) 132.Google Scholar
  26. 26.
    J. C. Carru, D. Delaffose, Metal Microstructures in Zeolites, Elsevier, Amsterdam, 1982, p. 221.Google Scholar
  27. 27.
    A. Chapoton, G. Ravalitera, M. Choquet, B. Vandorpe and L. Gengembre, Rev. Phys. Appl., 10 (1975) 153.Google Scholar
  28. 28.
    A. Sedzimir, Bull. Acad. Sci. Polonaise, XXVI (1978) 799.Google Scholar
  29. 29.
    T. Ohgushi, Bull. Chem. Soc. Japan, 61 (1988) 1109.Google Scholar
  30. 30.
    T. Ohgushi, K. Nonaka and T. Watanabe, Bull. Chem. Soc. Japan, 61 (1988) 1797.Google Scholar
  31. 31.
    C. P. Smith, Dielectrical Behavior and Structure, Mc Graw-Hill, N.Y., 1955.Google Scholar
  32. 32.
    A. Chelkovskii, Dielectric Physics, Elsevier, Amsterdam, 1980.Google Scholar
  33. 33.
    R. M. Barrer and E. A. Saxon-Napier, Trans. Far. Soc. 58 (1962) 145 and 58 (1962) 156.Google Scholar
  34. 34.
    F. G. Jansen and R. A. Schoonheydt, J. Chem. Soc. Far. Trans. I, 69 (1973) 1338.Google Scholar
  35. 35.
    C. P. Smyth, opus cit. pp. 73, 74, 101, 190 and 201.Google Scholar
  36. 36.
    A. R. Haydar and A. K. Jonsher, J. Chem. Soc. Far. Trans. I, 82 (1986) 3535.Google Scholar
  37. 37.
    R. Roque-Malherbe and M. Hernandez-Velez, Rev. Cubana Fisica in press.Google Scholar
  38. 38.
    A. K. Jonsher, conference on Physics of Dielectric Solids, University of Kent at Canterbury, 1980.Google Scholar
  39. 39.
    A. K. Jonsher, J. Phys. C: Solid State Phys., 11 (1978) L 601.Google Scholar
  40. 40.
    L. Landau and E. Lifchitz, Electrodynamique des mileux continus, Mir, Moscow, 1969, p. 325.Google Scholar
  41. 41.
    R. Roque-Malherbe, Adsorcion Fisica de Gases, ENPES-MES, Havana, 1987, pp. 38 and 113.Google Scholar

Copyright information

© Wiley Heyden Ltd, Chichester and Akadémiai Kiadó 1990

Authors and Affiliations

  • R. Roque-Malherbe
    • 1
  • M. Hernandez-Velez
    • 2
  1. 1.National Center for Scientific ResearchHavanaCuba
  2. 2.Higher Pedagogical Institute E. J. VaronaCiudad LibertadaHavanaCuba

Personalised recommendations