Advertisement

Journal of thermal analysis

, Volume 36, Issue 3, pp 969–977 | Cite as

Development and applications of a low-temperature differential thermal analyzer (77 < T, K < 330)

  • P. Knauth
  • R. Sabbah
Article

Abstract

A differential thermal analyzer for the temperature range 77 to 330 K is described and some applications, determination of the impurity content, the triple point temperature and the enthalpy of fusion of a substance, are given. The temperature and energy calibration of the apparatus are done with diphenyloxide, hexafluorobenzene and 1,3-difluorobenzene. The energy calibration coefficient can be expressed as a linear relation ofT3.n-Heptane, cyclohexane and 1,2-dichloroethane are investigated.

Keywords

Polymer Enthalpy Inorganic Chemistry Differential Thermal Analyzer Linear Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Es wird eine DTA-Apparatur für den Temperaturbereich 77-330 K beschrieben und einige Anwendungen gegeben, z. B. die Bestimmung des Verschmutzungsgrades, des Tripelpunktes oder der Schmelzwärme einer Substanz. Die Kalibrierung der Apparatur auf Temperatur und Energie erfolgte mit Diphenyloxid, Hexafluorbenzol und 1,3-Difluorbenzol. Der Kalibrationskoeffizient für die Energie kann als eine lineare Funktion vonT3 beschrieben werden.n-Heptan, Cyclohexan und 1,2-Dichlorethan wurden untersucht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Sabbah and I. Antipine, J. Thermal Anal., 32 (1987) 1929.Google Scholar
  2. 2.
    A. J. Head and R. Sabbah, Recommended Reference Materials for the Realization of Physicochemical properties, K. N. Marsh, Ed., Blackwell, Oxford, 1987.Google Scholar
  3. 3.
    J. P. McCullough and J. F. Messerly, The Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. The Use of n-Heptane as a Reference Substance for Low Temperature Calorimetry, Bull. N∘ 596 Bureau of Mines, U.S. Government Print. Off., Washington, 1961.Google Scholar
  4. 4.
    R. A. Ruehrwein and H. M. Huffman, J. Am. Chem. Soc., 65 (1943) 1620.Google Scholar
  5. 5.
    P. D. Garn and O. Menis, Thermochim. Acta, 42 (1980) 125.Google Scholar
  6. 6.
    A. Langier-Kuzniarowa, J. Thermal Anal., 29 (1984) 913.Google Scholar
  7. 7.
    K. S. Pitzer, J. Am. Chem. Soc., 62 (1940) 331.Google Scholar
  8. 8.
    J. F. Messerly and H. L. Finke, J. Chem. Thermodyn., 2 (1970) 867.Google Scholar
  9. 9.
    Atomic masses of the elements 1987, Pure and Applied Chem., 60 (1988) 841.Google Scholar
  10. 10.
    R. Sabbah and L. El Watik, J. Thermal Anal., in press.Google Scholar
  11. 11.
    K. Heide, Dynamische thermische Analysenmethoden, 2. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1982.Google Scholar
  12. 12.
    J. F. Counsell, J. H. S. Green, J. L. Hales and J. F. Martin, Trans. Faraday Soc., 61 (1965) 212.Google Scholar
  13. 13.
    G. T. Furukawa, D. C. Ginnings, R. E. McCoskey, R. A. Nelson, J. Res. Nat. Bur. Stand., 46 (1951) 195.Google Scholar

Copyright information

© Wiley Heyden Ltd, Chichester and Akadémiai Kiadó 1990

Authors and Affiliations

  • P. Knauth
    • 1
  • R. Sabbah
    • 1
  1. 1.Centre de Thermodynamique et de Microcalorimétrie DU C. N. R. S.MarseilleFrance

Personalised recommendations