Journal of thermal analysis

, Volume 8, Issue 2, pp 239–245 | Cite as

Phase diagram of the system CaF2-GdF3

  • P. P. Fedorov
  • Yu. G. Sizganov
  • B. P. Sobolev
  • M. Shvanner
Article

Abstract

A phase diagram of the system CaF2-GdF3 was studied by thermal and X-ray analysis. Two wide domains of solid solutions based on CaF2 and a high-temperature modification of α-GdF3 (LaF3-structural type) are present in this system. Two maxima were found on the melting curves of the Ca1−xGdxF2+x and α-(Gd1−yCayF3−y solid solutions, at 1428 ± 10‡ (5 mole % GdF3) and 1282 ± 5‡ (85 mole % GdF3), respectively. The coordinates of the eutectic are 60 mole % GdF3 and 1233 ± 5‡.

Keywords

Polymer Physical Chemistry Inorganic Chemistry Phase Diagram Solid Solution 

Résumé

L'étude du diagramme de phase du système CaF2-GdF3 par analyse thermique et diffraction des rayons X met en évidence deux larges domaines de solutions solides avec CaF2 et une modification haute température de GdF3 (structure type LaF3). On observe deux maximums sur les solidus des solutions solides Ca1−xGdxF2+x et α-(Gd1−yCa y )F3−y à 1428 ± 10‡ (5 mol% GdF3) et 1282 ± 5‡ (85 mol% GdF3), respectivement. L'eutectique correspond à 60 mol% GdF3 et 1233 ± 5‡.

Zusammenfassung

Das Phasendiagramm des Systems CaF2-GdF3 wurde durch thermische und Röntgenanalyse untersucht. Zwei breite Gebiete von festen Lösungen beruhend aud CaF2 und einer Hochtemperaturmodifikation von α-GdF3 (LaF3 Strukturtyp) sind im System zugegen. Zwei Maxima der Schmelzkurven der festen Lösungen Ca1−xGdxF2+x und α-(Gd1−yCa y )F3−y wurden bei 1428 ± 10‡ (5 Mol% GdF3) bzw. 1282 ± 5‡ (85 Mol% GdF3) gefunden. Die Koordinaten des Eutektikums sind 60 Mol% GdF3 und 1233 ± 5‡.

РЕжУМЕ

ИжУЧЕНА ДИАгРАММА сО стОьНИь сИстЕМы CaF2-GdF3 МЕтОДАМИ тЕРМИЧЕскО гО И РЕНтгЕНОФАжОВОгО АН АлИжОВ. В сИстЕМЕ ОБРА жУУтсь ДВЕ шИРОкИЕ ОБлАстИ тВЁР Дых РАстВОРОВ НА ОсНОВЕ сАF2 И ВысОкО тЕМпЕРАтУРНОИ МОДИФИкАцИИ α-GdF3 (стРУк тУРНыИ тИп LaF3). НА кРИВых плАВкОстИ тВËРДых РАстВОРОВ Ca1− xGdxF2+x И α-(Gd1−yCay)F3−y ИМЕУтсь МАксИМУМы с кООРДИНА тАМИ 1428‡ ± 10 (5 МОл% GdF3) И 1282 ± 10‡ (85 М Ол.% GdF3) сООтВЕтстВЕННО. пОлО жЕНИЕ ЁВтЕктИкИ − 60 МОл % GdF3 И 1233 ± 5‡.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    N. G. Gogadze, E. G. Ippolitov andB. M. Zhigarnovskii, Zh. Neorgan. Khim., 17 (1972) 1152.Google Scholar
  2. 2.
    Kh. S. Bagdasarov, P. B. Kalinin, J. E. Lapsker, A. A. Privezenzev andB. P. Sobolev, Zavodsk. laboratoriya, 39 (1973) 494.Google Scholar
  3. 3.
    F. H. Spedding andD. C. Henderson, J. Chem. Phys., 54 (1971) 2476.CrossRefGoogle Scholar
  4. 4.
    B. Porper andE. A. Brown, J. Am. Ceram. Soc., 45 (1962) 49.Google Scholar
  5. 5.
    O. N. Carlson andF. A. Schmidt, The Rare Earths, John Wiley and Sons, Inc., New York, N. Y., 1961.Google Scholar
  6. 6.
    J. Chassaing andD. Bizot, Compt. Rend., Ser. C, 276 (1973) 679.Google Scholar
  7. 7.
    H. Kojima, S. G. Whiteway andC. R. Masson, Can. J. Chem., 46 (1968) 2968.Google Scholar
  8. 8.
    B. M. Zhigarnovskii andE. G. Ippolitov, Izv. Acad. Nauk. SSSR, Neorgan. Mater., 6 (1970) 1958.Google Scholar
  9. 9.
    R. E. Thoma andG. D. Brunton, Inorg. Chem., 5 (1966) 1937.CrossRefGoogle Scholar
  10. 10.
    D. A. Jones andW. A. Shand, J. Cryst. Growth, 2 (1968) 361.CrossRefGoogle Scholar
  11. 11.
    B. F. Naylor, J. Am. Chem. Soc., 67 (1945) 150.CrossRefGoogle Scholar
  12. 12.
    J. Mukerji, J. Am. Ceram. Soc., 48 (1965) 210.Google Scholar
  13. 13.
    R. D. Allen, Amer. Miner., 37 (1952) 910.Google Scholar
  14. 14.
    L. P. Roozinov, Statistical methods of the optimation of chemical processes, Moscow, Chemia, 1972.Google Scholar
  15. 15.
    F. Delbove andS. Lallemand-Chatain, Compt. Rend., Sér. C, 270 (1970) 964.Google Scholar
  16. 16.
    M. Mansmann, Z. Krist., 122 (1965) 375.Google Scholar
  17. 17.
    L. S. Garashina andB. P. Sobolev, Kristallografiya, 16 (1971) 307.Google Scholar
  18. 18.
    B. P. Sobolev, L. S. Garashina, P. P. Fedorov, N. L. Tkachenko andK. B. Seiranyan, Kristallografiya, 18 (1973) 751.Google Scholar
  19. 19.
    O. Greis andT. Petzel, Z. Anorg. Allgem. Chem., 403 (1974) 1.CrossRefGoogle Scholar
  20. 20.
    K. Niihara andS. Yajima, Bull. Chem. Soc. Japan, 44 (1971) 643.Google Scholar
  21. 21.
    E. G. Ippolitov, N. G. Gogadze andB. M. Zhigarnovskii, Zh. Neorgan. Khim., 15 (1970) 3318.Google Scholar
  22. 22.
    R. H. Nafziger andN. Riazance, J. Am. Ceram. Soc., 55 (1972) 130.Google Scholar
  23. 23.
    M.Robinson, G.Hills and D. M.Cripe, Method for preparing high quality rare earth and alkaline earth fluoride single crystals, patent U.S.A. N 3649552.Google Scholar
  24. 24.
    R. C. Pastor, M. Robinson, A. C. Pastor andK. T. Miller, The II Nat. Conf. on Crystal Growth, Princeton Univ. Campus, July 30, Vol. 1, p. 26, 1972.Google Scholar
  25. 25.
    R. C. Pastor andM. Robinson, Mater. Res. Bull., 9 (1974) 569.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1975

Authors and Affiliations

  • P. P. Fedorov
    • 1
  • Yu. G. Sizganov
    • 1
  • B. P. Sobolev
    • 1
  • M. Shvanner
    • 1
    • 2
  1. 1.Institute of CrystallographyAcademy of Sciences of the USSRMoscowUSSR
  2. 2.Physical InstituteAcademy of Sciences of SlovakiaBratislavačSSR

Personalised recommendations