Acta Mathematica Hungarica

, Volume 58, Issue 3–4, pp 383–387 | Cite as

On an assertion of Riemann concerning the distribution of prime numbers

  • J. Pintz


Prime Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. E. Ingham,The distribution of prime numbers, Cambridge, University Press, 1932.Google Scholar
  2. [2]
    S. Knapowski, On the sign changes in the remainder term in the prime number formula,Journ. London Math. Soc.,36 (1961), 451–460.Google Scholar
  3. [3]
    S. Knapowski and P. Turán, On the sign changes of (π(x)-lix), I,Topics in Number Theory, Coll. Math. Soc. János Bolyai, 13., North-Holland P. C. (Amsterdam-Oxford-New York, 1976), pp. 153–169.Google Scholar
  4. [4]
    D. N. Lehmer, List of primes from 1 to 10 006 721,Carnegie Inst. Wash., Publ. No. 165 (Washington D. C. 1914).Google Scholar
  5. [5]
    J. E. Littlewood, Sur la distribution des nombers premiers,C. R. Acad. Sci. Paris,158 (1914), 1869–1872.Google Scholar
  6. [6]
    J. Pintz, On the remainder term of the prime number formula IV, Sign changes ofπ(x)-lix, Studia Sci. Math. Hung.,13 (1978), 29–42.Google Scholar
  7. [7]
    K. Prachar,Primzahlverteilung (Berlin-Göttingen-Heidelberg, 1957).Google Scholar
  8. [8]
    B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse,Monatsh. Preuss. Acad. Wiss. (Berlin, 1959), pp. 671–680.Google Scholar
  9. [9]
    E. Schmidt, Über die Anzahl der Primzahlen unter gegebener Grenze,Math. Ann.,57 (1903), 195–204.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • J. Pintz
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations