Acta Mathematica Hungarica

, Volume 58, Issue 3–4, pp 383–387 | Cite as

On an assertion of Riemann concerning the distribution of prime numbers

  • J. Pintz


Prime Number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. E. Ingham,The distribution of prime numbers, Cambridge, University Press, 1932.Google Scholar
  2. [2]
    S. Knapowski, On the sign changes in the remainder term in the prime number formula,Journ. London Math. Soc.,36 (1961), 451–460.Google Scholar
  3. [3]
    S. Knapowski and P. Turán, On the sign changes of (π(x)-lix), I,Topics in Number Theory, Coll. Math. Soc. János Bolyai, 13., North-Holland P. C. (Amsterdam-Oxford-New York, 1976), pp. 153–169.Google Scholar
  4. [4]
    D. N. Lehmer, List of primes from 1 to 10 006 721,Carnegie Inst. Wash., Publ. No. 165 (Washington D. C. 1914).Google Scholar
  5. [5]
    J. E. Littlewood, Sur la distribution des nombers premiers,C. R. Acad. Sci. Paris,158 (1914), 1869–1872.Google Scholar
  6. [6]
    J. Pintz, On the remainder term of the prime number formula IV, Sign changes ofπ(x)-lix, Studia Sci. Math. Hung.,13 (1978), 29–42.Google Scholar
  7. [7]
    K. Prachar,Primzahlverteilung (Berlin-Göttingen-Heidelberg, 1957).Google Scholar
  8. [8]
    B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse,Monatsh. Preuss. Acad. Wiss. (Berlin, 1959), pp. 671–680.Google Scholar
  9. [9]
    E. Schmidt, Über die Anzahl der Primzahlen unter gegebener Grenze,Math. Ann.,57 (1903), 195–204.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • J. Pintz
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations