Acta Mathematica Hungarica

, Volume 58, Issue 3–4, pp 297–309 | Cite as

Convolution rings of multiplications of an abelian group

  • J. R. Clay


Abelian Group Convolution Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. A. Beaumont, Rings with additive group which is the direct sum of cyclic groups,Duke Math. J.,15 (1948), 367–369.CrossRefGoogle Scholar
  2. [2]
    J. R. Clay, The group of left distributive multiplications on an abelian group,Acta Math. Acad. Sci. Hung.,19 (1968), 221–227.CrossRefGoogle Scholar
  3. [3]
    J. R. Clay,The near-rings definable on an arbitrary group and the group of left distributive multiplications definable on an abelian group, Doctoral Dissertation, Univ. of Washington (Seattle, 1966).Google Scholar
  4. [4]
    S. Feigelstock and A. Klein, A functorial approach to near-rings,Acta Math. Acad. Sci. Hung.,34 (1979), 47–57.CrossRefGoogle Scholar
  5. [5]
    L. Fuchs, Ringe und ihre additive Gruppe,Publ. Math. Debrecen,4 (1956), 488–508.Google Scholar
  6. [6]
    L. Fuchs, On quasi nil groups,Acta Sci. Math. (Szeged),18 (1957), 33–43.Google Scholar
  7. [7]
    L. Fuchs,Abelian Groups, Pergamon (New York, 1960).Google Scholar
  8. [8]
    L. Fuchs,Infinite Abelian Groups, vol. II, Academic Press (New York, 1973).Google Scholar
  9. [9]
    L. Fuchs and T. Szele, On Artinian rings,Acta Sci. Math. (Szeged),17 (1956), 30–40.Google Scholar
  10. [10]
    F. L. Hardy, On groups of ring multiplications,Acta Math. Acad. Sci. Hung.,14 (1963), 283–294.CrossRefGoogle Scholar
  11. [11]
    E. Hewitt and K. Stromberg,Real and Abstract Analysis, Springer-Verlag (New York, 1965).Google Scholar
  12. [12]
    M. Loève,Probability Theory, 3rd Ed., Van Nostrand (Princeton, 1963).Google Scholar
  13. [13]
    S. MacLane and G. Birkhoff,Algebra, Macmillan (New York, 1967).Google Scholar
  14. [14]
    L. Rédei, Über die Ringe mit gegebene Modul,Acta Sci. Math. (Szeged),15 (1954), 251–254.Google Scholar
  15. [15]
    L. Rédei and T. Szele, Die Ringe “ersten Ranges”,Acta Sci. Math. (Szeged),12A (1950), 18–29.Google Scholar
  16. [16]
    R. Ree and R. J. Wisner, A note on torsion-free nil groups,Proc. Am. Math. Soc.,7 (1956), 6–8.Google Scholar
  17. [17]
    T. Szele, Zur Theorie der Zeroringe,Math. Ann.,121 (1949), 242–246.CrossRefGoogle Scholar
  18. [18]
    T. Szele, Nilpotent Artinian rings,Publ. Math. Debrecen,4 (1955), 71–78.Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • J. R. Clay
    • 1
  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations