Acta Mathematica Hungarica

, Volume 58, Issue 3–4, pp 297–309 | Cite as

Convolution rings of multiplications of an abelian group

  • J. R. Clay


Abelian Group Convolution Ring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. A. Beaumont, Rings with additive group which is the direct sum of cyclic groups,Duke Math. J.,15 (1948), 367–369.CrossRefGoogle Scholar
  2. [2]
    J. R. Clay, The group of left distributive multiplications on an abelian group,Acta Math. Acad. Sci. Hung.,19 (1968), 221–227.CrossRefGoogle Scholar
  3. [3]
    J. R. Clay,The near-rings definable on an arbitrary group and the group of left distributive multiplications definable on an abelian group, Doctoral Dissertation, Univ. of Washington (Seattle, 1966).Google Scholar
  4. [4]
    S. Feigelstock and A. Klein, A functorial approach to near-rings,Acta Math. Acad. Sci. Hung.,34 (1979), 47–57.CrossRefGoogle Scholar
  5. [5]
    L. Fuchs, Ringe und ihre additive Gruppe,Publ. Math. Debrecen,4 (1956), 488–508.Google Scholar
  6. [6]
    L. Fuchs, On quasi nil groups,Acta Sci. Math. (Szeged),18 (1957), 33–43.Google Scholar
  7. [7]
    L. Fuchs,Abelian Groups, Pergamon (New York, 1960).Google Scholar
  8. [8]
    L. Fuchs,Infinite Abelian Groups, vol. II, Academic Press (New York, 1973).Google Scholar
  9. [9]
    L. Fuchs and T. Szele, On Artinian rings,Acta Sci. Math. (Szeged),17 (1956), 30–40.Google Scholar
  10. [10]
    F. L. Hardy, On groups of ring multiplications,Acta Math. Acad. Sci. Hung.,14 (1963), 283–294.CrossRefGoogle Scholar
  11. [11]
    E. Hewitt and K. Stromberg,Real and Abstract Analysis, Springer-Verlag (New York, 1965).Google Scholar
  12. [12]
    M. Loève,Probability Theory, 3rd Ed., Van Nostrand (Princeton, 1963).Google Scholar
  13. [13]
    S. MacLane and G. Birkhoff,Algebra, Macmillan (New York, 1967).Google Scholar
  14. [14]
    L. Rédei, Über die Ringe mit gegebene Modul,Acta Sci. Math. (Szeged),15 (1954), 251–254.Google Scholar
  15. [15]
    L. Rédei and T. Szele, Die Ringe “ersten Ranges”,Acta Sci. Math. (Szeged),12A (1950), 18–29.Google Scholar
  16. [16]
    R. Ree and R. J. Wisner, A note on torsion-free nil groups,Proc. Am. Math. Soc.,7 (1956), 6–8.Google Scholar
  17. [17]
    T. Szele, Zur Theorie der Zeroringe,Math. Ann.,121 (1949), 242–246.CrossRefGoogle Scholar
  18. [18]
    T. Szele, Nilpotent Artinian rings,Publ. Math. Debrecen,4 (1955), 71–78.Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • J. R. Clay
    • 1
  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations