Acta Mathematica Hungarica

, Volume 57, Issue 1–2, pp 33–39 | Cite as

On the construction of Ljusternik-Schnirelmann critical values in banach spaces

  • A. Lehtonen


Banach Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Amann, Ljusternik-Schnirelmann theory and non-linear eigenvalue problems,Math. Ann.;199 (1972), 55–72.Google Scholar
  2. [2]
    S. Fučik, J. Nečas, J. Souček, V. Souček,Spectral Analysis of Nonlinear Operators; Lecture Notes in Mathematics 346, Springer-Verlag (Berlin, 1973).Google Scholar
  3. [3]
    H. Gajewski, K. Gröger, K. Zacharias,Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag (Berlin, 1974).Google Scholar
  4. [4]
    A. Kratochvíl, J. Nečas, Secant modulus method for the construction of a solution of non-linear eigenvalue problems,Boll. Un. Mat. Ital.,16 (1979), 694–710.Google Scholar
  5. [5]
    A. Kratochvíl, J. Nečas, Gradient methods for the construction of Ljusternik-Schnirelmann critical values,RAIRO Anal. Numér.,14 (1980), 43–54.Google Scholar
  6. [6]
    J. L. Lions,Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires; Gauthier-Villars (Paris, 1969).Google Scholar
  7. [7]
    J. Nečas, An approximate method of finding critical points of even functionals,Proc. Steklov Inst. Math.;134 (1975), 267–272.Google Scholar
  8. [8]
    J. Nečas, A. Lehtonen, P. Neittaanmäki, On the construction of Ljusternik-Schnirelmann critical values with application to bifurcation problems,Applicable Anal. (to appear).Google Scholar
  9. [9]
    P. Neittaanmäki, K. Ruotsalainen, On the numerical solution of the bifurcation problem for the sine-Gordon equation,Arab. J. Math. (1986) (to appear).Google Scholar
  10. [10]
    L. Nirenberg,Topics in Nonlinear Functional Analysis, Lecture Note, Courant Institute of Mathematical Sciences, New York University, 1974.Google Scholar
  11. [11]
    K. Yosida,Functional Analysis, Fourth Edition, Grundlehren der mathematischen Wissenschaften 123, Springer-Verlag (New York, 1974).Google Scholar
  12. [12]
    E. Zeidler,Nonlinear Functional Analysis and its Applications III. Variational Methods and Optimization, Springer-Verlag (New York, 1985).Google Scholar

Copyright information

© Akadémia Kiadó 1991

Authors and Affiliations

  • A. Lehtonen
    • 1
  1. 1.Department of mathematicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations