Acta Mathematica Hungarica

, Volume 56, Issue 1–2, pp 65–70 | Cite as

Circles, horocycles and hypercycles in a finite hyperbolic plane

  • C. W. L. Garner


Hyperbolic Plane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. S. M. Coxeter,Non-Euclidean Geometry, 3rd edition, University of Toronto Press (Toronto, 1957).Google Scholar
  2. [2]
    H. S. M. Coxeter,Projective Geometry, 2nd edition, University of Toronto Press (Toronto, 1974).Google Scholar
  3. [3]
    P. Dembowski,Finite Geometries, Springer-Verlag (Berlin, 1968).Google Scholar
  4. [4]
    C. W. L. Garner, A finite analogue of the classical hyperbolic plane and Hjelmslev groups,Geom. Ded.,7 (1978), 315–331.Google Scholar
  5. [5]
    C. W. L. Garner, Conics in finite projective planes,J. Geometry,12 (1979), 132–134.Google Scholar
  6. [6]
    C. W. L. Garner, Motions in a finite hyperbolic plane,The Geometric Vein, The Coxeter Festschrift, Springer-Verlag (Berlin, 1982), 485–493.Google Scholar
  7. [7]
    F. Klein,Vorlesungen über nicht-Euklidische Geometrie, Chelsea (New York, 1959).Google Scholar
  8. [8]
    G. Pickert,Projektive Ebenen, Springer-Verlag (Berlin, 1955).Google Scholar
  9. [9]
    B. Segre, Ovals in finite projective planes,Can. J. Math.,7 (1955), 414–416.Google Scholar

Copyright information

© Akadémia Kiadó 1990

Authors and Affiliations

  • C. W. L. Garner
    • 1
  1. 1.Department of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations