Acta Mathematica Hungarica

, Volume 56, Issue 1–2, pp 65–70 | Cite as

Circles, horocycles and hypercycles in a finite hyperbolic plane

  • C. W. L. Garner


Hyperbolic Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. S. M. Coxeter,Non-Euclidean Geometry, 3rd edition, University of Toronto Press (Toronto, 1957).Google Scholar
  2. [2]
    H. S. M. Coxeter,Projective Geometry, 2nd edition, University of Toronto Press (Toronto, 1974).Google Scholar
  3. [3]
    P. Dembowski,Finite Geometries, Springer-Verlag (Berlin, 1968).Google Scholar
  4. [4]
    C. W. L. Garner, A finite analogue of the classical hyperbolic plane and Hjelmslev groups,Geom. Ded.,7 (1978), 315–331.Google Scholar
  5. [5]
    C. W. L. Garner, Conics in finite projective planes,J. Geometry,12 (1979), 132–134.Google Scholar
  6. [6]
    C. W. L. Garner, Motions in a finite hyperbolic plane,The Geometric Vein, The Coxeter Festschrift, Springer-Verlag (Berlin, 1982), 485–493.Google Scholar
  7. [7]
    F. Klein,Vorlesungen über nicht-Euklidische Geometrie, Chelsea (New York, 1959).Google Scholar
  8. [8]
    G. Pickert,Projektive Ebenen, Springer-Verlag (Berlin, 1955).Google Scholar
  9. [9]
    B. Segre, Ovals in finite projective planes,Can. J. Math.,7 (1955), 414–416.Google Scholar

Copyright information

© Akadémia Kiadó 1990

Authors and Affiliations

  • C. W. L. Garner
    • 1
  1. 1.Department of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations