Acta Mathematica Hungarica

, Volume 57, Issue 3–4, pp 233–243 | Cite as

Convergence of fourier series of a function on generalized Wiener's classBV (p(n↑∞)

Article

Keywords

Fourier Series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. K. Bary,A treatise on trigonometric series I, Pergamon Press (New York, 1964).Google Scholar
  2. [2]
    Z. A. Chanturiya, The modulus of variation of a function and its application in the theory of Fourier series,Soviet Math. Dokl.,15 (1974), 67–71.Google Scholar
  3. [3]
    H. Kita and K. Yoneda, A generalization of bounded variation, (to appear inActa Math. Hung.,56 (1990).Google Scholar
  4. [4]
    R. N. Siddiqi, A note on convergence of Fourier series of a function on Wiener's classV p,Canad. Math. Bull. 20 (1977), 243–247.Google Scholar
  5. [5]
    N. Wiener, The quadratic variation of a function and its Fourier coefficients,Massachusetts J. Math.,3 (1924), 72–94.Google Scholar
  6. [6]
    K. Yoneda, On control functions of a.e. convergences,Math. Japon.,20 (1975), 101–105.Google Scholar
  7. [7]
    K. Yoneda, On a.e. convergence of Fourier series,Math. Japon.,30 (1985), 617–633.Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • H. Kita
    • 1
  1. 1.Department of Mathematics Faculty of EducationOita UniversityOitaJapan

Personalised recommendations