Acta Mathematica Hungarica

, Volume 58, Issue 1–2, pp 211–225 | Cite as

On the number of prime factors of ϕ(ϕ(n))

  • I. Kátai


Prime Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Erdős - C. Pommerance, On the normal number of prime factors ofn, Rocky Mountain Journal,15 (1985), 343–352.Google Scholar
  2. [2]
    I. Kátai, Distribution ofω(σ(p+1)),Annales Univ. Sci. Budapest. Sectio Math. (submitted).Google Scholar
  3. [3]
    N. G. De Bruijn, On the number of positive integers ≦x and free of prime factors<y, Nederl. Akad. Wet. Proc. Ser. A,54 (1951), 50–60.Google Scholar
  4. [4]
    H. Halberstam - H. Richert,Sieve methods, Academic Press, 1974.Google Scholar
  5. [5]
    J. Kubilius,Probabilistic methods in the theory of number, Translations of Mathematical Monographs, Vol. 11, Amer. Math. Soc. (Providence, R. I., 1964).Google Scholar
  6. [6]
    E. Bombieri, On the large sieve,Mathematika,12 (1965), 201–225.Google Scholar
  7. [7]
    M. Ram Murty - V. Kumar Murty, Prime divisors of Fourier coefficients of modular forms,Duke Math. Journal,51 (1984), 57–76.Google Scholar
  8. [8]
    M. Ram Murty - V. Kumar Murty, Analogue of the Erdős-Kac theorem for Fourier coefficients of modular forms,Indian Journal of Pure and Applied Math.,15 (1984), 1090–1101.Google Scholar
  9. [9]
    M. Ram Murty - N. Saradha, On the sieve of Eratosthenes,Canad. J. Math.,39 (1987), 1107–1121.Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • I. Kátai
    • 1
  1. 1.Computer CenterEötvös Loránd UniversityBudapestHungary

Personalised recommendations