Acta Mathematica Hungarica

, Volume 58, Issue 1–2, pp 211–225 | Cite as

On the number of prime factors of ϕ(ϕ(n))

  • I. Kátai


Prime Factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Erdős - C. Pommerance, On the normal number of prime factors ofn, Rocky Mountain Journal,15 (1985), 343–352.Google Scholar
  2. [2]
    I. Kátai, Distribution ofω(σ(p+1)),Annales Univ. Sci. Budapest. Sectio Math. (submitted).Google Scholar
  3. [3]
    N. G. De Bruijn, On the number of positive integers ≦x and free of prime factors<y, Nederl. Akad. Wet. Proc. Ser. A,54 (1951), 50–60.Google Scholar
  4. [4]
    H. Halberstam - H. Richert,Sieve methods, Academic Press, 1974.Google Scholar
  5. [5]
    J. Kubilius,Probabilistic methods in the theory of number, Translations of Mathematical Monographs, Vol. 11, Amer. Math. Soc. (Providence, R. I., 1964).Google Scholar
  6. [6]
    E. Bombieri, On the large sieve,Mathematika,12 (1965), 201–225.Google Scholar
  7. [7]
    M. Ram Murty - V. Kumar Murty, Prime divisors of Fourier coefficients of modular forms,Duke Math. Journal,51 (1984), 57–76.Google Scholar
  8. [8]
    M. Ram Murty - V. Kumar Murty, Analogue of the Erdős-Kac theorem for Fourier coefficients of modular forms,Indian Journal of Pure and Applied Math.,15 (1984), 1090–1101.Google Scholar
  9. [9]
    M. Ram Murty - N. Saradha, On the sieve of Eratosthenes,Canad. J. Math.,39 (1987), 1107–1121.Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • I. Kátai
    • 1
  1. 1.Computer CenterEötvös Loránd UniversityBudapestHungary

Personalised recommendations