Advertisement

Surveys in Geophysics

, Volume 12, Issue 1–3, pp 221–247 | Cite as

Partial analysis applied to scale problems in surface moisture fluxes

  • V. Kuhnel
  • J. C. I. Dooge
  • J. P. J. O'Kane
  • R. J. Romanowicz
Part II: Modeling and Analysis

Abstract

Partial analysis is applied to the problem of predicting the moisture fluxes of infiltraton and evaporation at land surfaces. The discussion covers the widely different scales of the soil particle, a soil pedon, a field, a basin and a biome. It is suggested that simplified models can be used at these different scales to provide bounding solutions to the integrated behaviour of land surface fluxes of interest in linking hydrologic models and general circulation climate models.

Keywords

Evaporation Land Surface Soil Particle General Circulation Hydrologic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramopoulos, F., Rosenzweig, C., and Choudhury, B.: 1988, ‘Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration’,J. Climate 1(9), 921–941.Google Scholar
  2. Beckett, P. H. T. and Webster, R.: 1971, ‘Soil Variability: A Review’,Soil and Fertilisers 34, 1–15.Google Scholar
  3. Beven, K. J. and Kirkby, M. J.: 1979, ‘A Physically-Based Variable Contributing Area Model of Basin Hydrology’,Hydrol. Sci. Bull. 24, 43–69.Google Scholar
  4. Beven, K. J., Kirkby, M. J., Schofield, N., and Tagg, A. F.: 1984, ‘Testing a Physically-Based Flood Forecasting Model (TOPMODEL) for Three U.K. Catchments’,J. Hydrol. 69, 119–143.Google Scholar
  5. Bonnet, M.: 1982, ‘Methodologie de modeles de simulation en Hydrologie’, Document 34, Bureau de Recherches Geologique et Minieres, Orleans, France.Google Scholar
  6. Bouchet, R. J.: 1963, ‘Evapotranspiration, reele et potentielle, signification climatique’,General Assembly of Berkeley, IAHS Publ. No.62, 134–142.Google Scholar
  7. Brutsaert, W. H. and Stricker, H.: 1979, ‘An Advection — Aridity Approach to Estimate Actual Regional Evapotranspiration’,Water Rasour. Res. 15, 443–450.Google Scholar
  8. Budyko, M. I.: 1948,Evaporation under Natural Conditions, Gimiz, Leningrad. (IPST, Jerusalem, 1963).Google Scholar
  9. Budyko, M. I.: 1955, ‘On the Determination of Evaporation from the Land Surface’, (in Russian),Meteorol. Gydrol. No.1, 52–58.Google Scholar
  10. Budyko, M. I.: 1971,Klimat i zhizn, Gidrometeor. Izdat., Leningrad. Trans. by D.H. Miller as Climate and Life, Academic Press, New York, 1974.Google Scholar
  11. Carslaw, H. S. and Jaeger, J. C.: 1946,Conduction of Heat in Solids. Oxford University Press. First edition.Google Scholar
  12. Carson, D. J.: 1982, ‘Current parametrization of Land-Surface Processes in Atmospheric General Circulation Models’, in Eagleson, P. S. (ed.),Land Surface Processes in Atmospheric General Circulation Models, Cambridge University Press, pp. 67–108.Google Scholar
  13. Childs, E. C.: 1969,An Introduction to the Physical Basis of Soil Water Phenomena, Wiley Interscience Publication, London, 493 pp.Google Scholar
  14. Childs, E. C. and Collis-George, N.:1950, ‘The Permeability of Porous Materials’,Proc. Roy. Soc. 201A, 392–405.Google Scholar
  15. Clark, R. D. S.: 1980, ‘Rainfall Stormflow Analysis to Investigate Spatial and Temporal Variability of Excess Rainfall Generations’,J. Hydrol. 47, 91–110.Google Scholar
  16. Collins, R. E.: 1961,Flow of Fluids Through Porous Materials, Reinhold Publishing Corporation, New York.Google Scholar
  17. Crawford, N. H. and Linsley, R. K.: 1966,Digital Simulation in Hydrology, Stanford Watershed Model IV, Dept. Civil. Eng., Stanford. Univ., Technical Report No.39.Google Scholar
  18. Darcy, H.: 1856,Les fontaines publiques de la ville de Dijon, Victor Dalmont, Paris.Google Scholar
  19. Dawdy, D. R. and O'Donnell, T.: 1965, ‘Mathematical Model of Catchment Behavior’,J. Hydraul. Div. ASCE,91(HY4), 123–137.Google Scholar
  20. De Backer, L. W.: 1989, ‘Background Concepts and Principles’, in H. J. Morel-Seytoux (ed.),Unsaturated Flow in Hydrologic Modeling, Theory and Practice, Kluwer Acad. Publ. pp. 3–25.Google Scholar
  21. Delworth, T. L. and Manabe, S.: 1988, ‘The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate’,J. Climate 1(5), 523–547.Google Scholar
  22. Dickinson, R. E.: 1984, ‘Modelling Evapotranspiration for Three-Dimensional Global Climate Models’, in J. E. Hansen and T. Takahashi (eds.),Climate Processes and Climate Sensitivity, Geophysical Monograph 29 A.G.U. Washington, pp. 58–72.Google Scholar
  23. Dickinson, R. E. and Hanson, B.: 1984, ‘Vegetation-Albedo Feedbacks, J. E. Hansen and T. Takahashi (eds.),Climate Process and Climate Sensitivity, Geophysical Monograph 29, A.G.U. Washington, pp. 180–186.Google Scholar
  24. Dooge, J. C. I.: 1973,Linear Theory of Hydrologic Systems, Tech. Bulletin. No. 1468, U.S. Agri. Res. Ser., Washington, D.C. 327 pp.Google Scholar
  25. Dooge, J. C. I.: 1982, ‘Parameterization of Hydrologic Processes’, in P. S. Eagleson (ed.),Land Surface Processes in Atmospheric Global Circulation Models, Cambridge Univ. Press, pp. 243–288.Google Scholar
  26. Dooge, J. C. I.: 1986,Scale Problems in Hydrology, Fifth Chester C. Kisiel Memorial Lecture, Department of Hydrology and Water Resources, Univ. Arizona, Tucson.Google Scholar
  27. Dunin, F. A. and Aston, A. R.: 1981, ‘Spatial Variability in the Water Balance of an Experimental Catchment’,Aust. J. Soil Res. 19, 113–120.Google Scholar
  28. Dunne, T.: 1978, ‘Field Studies of Hillslope Flow Processes’, in M. J. Kirkby (ed.),Hillslope Hydrology, Wiley-Interscience, New York, pp. 227–293.Google Scholar
  29. Dunne, T.: 1982, ‘Models of Runoff Processes and Their Significance’, in J. R. Wallis (ed.),Studies in Geophysics: Scientific Basis of Water Resources Management, National Academy of Sciences, Washington, pp. 19–30.Google Scholar
  30. Dunne, T. and Black, R. D.: 1970, ‘Partial Area Contributions to Storm Runoff in a Small New England Watershed’,Water Resour. Res. 6, 1296–1331.Google Scholar
  31. Eagleson, P. S.: 1978, ‘Climate, Soil and Vegetation: 3. A Simplified Model of Soil Moisture Movement in the Liquid Phase’,Water Resour. Res. 14, 722–739.Google Scholar
  32. Eagleson, P. S.: 1982a, ‘Dynamic Hydro-Thermal Balances at Macroscale’, in P. S. Eagleson (ed.),Land Surface Processes in Atmospheric Global Circulation Models, Cambridge Univ. Press, pp. 289–357.Google Scholar
  33. Eagleson, P. S.: 1982b, ‘Ecological Optimality in Water-Limited Natural Soil-Vegetation Systems. 1. Theory and Hypothesis’,Water Resour. Res. 19(2), 325–340.Google Scholar
  34. Eagleson, P. S. and Segarra, R. I.: 1985, ‘Water-Limited Equilibrium of Savanna Vegetation Systems’,Water Resour. Res. 21(10), 1483–1493.Google Scholar
  35. Eagleson, P. S. and Tellers, R. R.: 1982, ‘Ecological Optimality in Water-Limited Natural Soil-Vegetation Systems. 2. Tests and Applications’,Water Resour. Res. 18(2), 341–354.Google Scholar
  36. ECCHE: 1977,Flood Forecasting for Humid Regions of China, East China College of Hydraulic Engineering, Nanjing, China.Google Scholar
  37. Entekhabi, D. and Eagleson, P. S.: 1989, ‘Land Surface Hydrology Parameterization for Atmospheric General Circulation Models Including Subgrid Scale Variability’,J. of Climate 2(8), 816–831.Google Scholar
  38. Famiglietti, J. S. and Wood, E. F.: 1990.Evapotranspiration and Runoff from Large Land Areas: Land Surface Hydrology for Atmospheric General Circulation Models, Water Resources Program, Dept. Civil Eng. & Operations Res. Princeton Univ.Google Scholar
  39. Fleming, G.: 1975,Computer Simulation Techniques in Hydrology, Elsevier, New York.Google Scholar
  40. Freeze, R. A.: 1980,A Stochastic-Conceptual Analysis of Rainfall-Runoff Processes on a Hillslope, Dept. of Geological Sciences, University of British Columbia, Vancouver B.C.Google Scholar
  41. Ganoulis, J. G.: 1986, ‘Sur les èchelles spatiales des hétérogénéites en milieu poreaux’,Hydrogéologie 2, 115–123.Google Scholar
  42. Ganoulis, J. G.: 1989, ‘Multiphase Flow in Porous Media: Description at the Pore and Macroscopic Scale’, in H. H. Morel-Seytoux (ed.),Unsaturated Flow in Hydrologic Modelling, pp. 27–52.Google Scholar
  43. Gleick, P. H.: 1987, ‘The Development and Testing of a Water Balance Model for Climate Impact Assessment-Modelling the Sacramento Basin’,Water Resour. Res. 23(6), 1049–1061.Google Scholar
  44. Gupta, V. K., Rodriguez-Iturbe, I., and Wood, E. F.: (eds.): 1986,Scale Problems in Hydrology: Runoff Generation and Basin Response, Kluwer Acad. Publ. Dordrecht, Holland.Google Scholar
  45. Haines, W. B.: 1925, ‘Studies in the Physical Properties of Soils. II. A Note on the Cohesion Developed by Capillary Forces in an Ideal Soil’,J. Agric. Sci. 15, 529–535.Google Scholar
  46. Haines, W. B.: 1927, ‘Studies in the Physical Properties of Soils. IV. A Further Contribution to the Theory of Capillary Phenomena in Soil’,J. Agric. Sci. 17, 264–290.Google Scholar
  47. Haines, W. B.: 1930, ‘Studies in the Physical Properties of Soil. V. The Hysteresis Effect in Capillary Properties, and the Modes of Moisture Distribution Associated Therewith’,J. Agric. Sci. 20, 97–116.Google Scholar
  48. Hamming, R. W.: 1962,Numerical Methods for Scientists and Engineers, McGraw-Hill, New York.Google Scholar
  49. Hasselmann, K.: 1976, ‘Stochastic Climate Models. Part I, Theory’,Tellus 28, 473–485.Google Scholar
  50. Hewlett, J. D.: 1961,Soil Moisture as a Source of Base Flow from Steep Mountain Watersheds US Dept. Agric. Forest. Ser., Southeastern Forest Experiment Station, Sheville, North Carolina, Station paper No. 132. 11 pp.Google Scholar
  51. Hopmans, J. W.: 1987, ‘A Comparison of Various Methods to Scale Soil Hydraulic Properties’,J. Hydrol. 93, 241–256.Google Scholar
  52. Horsfield, H. T.: 1934, ‘Strength of Asphalt Mixtures’,J. Soc. Chem. Ind. 53, 108–111.Google Scholar
  53. Horton, R. E.: 1933, ‘The Role of Infiltration in the Hydrologic Circle’,Transaction of the American Geophysical Union 14, 446–460.Google Scholar
  54. Idso, S. B. and Brazel, A. J.: 1984, ‘Rising Atmospheric Carbon Dioxide Concentrations May Increase Streamflow,Nature 312(5989), 51–53.Google Scholar
  55. Kibler, D. F. and Woolhiser, D. A.: 1970, ‘The Kinematic Cascade as a Hydrological Model’, Hydrological Paper 39, Colorado State Univ.Google Scholar
  56. Kirkby, J. J.: 1985, ‘Hillslope Hydrology’, in M. G. Anderson and T. P. Burt (eds.),Hydrological Forecasting, pp. 37–75.Google Scholar
  57. Klemes, V.: 1985, ‘Sensitivity of Water-Resources Systems to Climate Variations’,World Climate Report 98, WMO, Geneva.Google Scholar
  58. Kline, S. J.: 1965,Similitude and Approximation Theory, McGraw Hill.Google Scholar
  59. Kohler, M. A.: 1963, ‘Rainfall-Runoff Models’,Symposium on Surface Waters. General Assembly of Berkeley. IAHS Publ. No.63, 479–491.Google Scholar
  60. Kühnel, V.: 1989, ‘Scale Problems in Soil Moisture Flow’, Ph.D. Thesis, Dept. Civil. Eng., University College Dublin.Google Scholar
  61. Kühnel, V., Dooge, J. C. I., O'Kane, J. P. J., and Romanowicz, R. J.: 1990,Partial Analysis Applied to Scale Problems in Surface Moisture Fluxes, CWRR EEC/NBST Project CLI-038-EIR(J), Report No. 1, Dublin.Google Scholar
  62. Machado, D. and O'Donnell, T.: 1982, ‘A Stochastic Interpretation of a Lumped Overland Flow Model in Morel-Seytoux (ed.),Modelling of Hydrologic Processes, Water Resour. Publ., Fort Collins, Colorado. pp. 259–269.Google Scholar
  63. Miller, E. E. and Miller, R. D.: 1955, ‘Theory of Capillarity Flow: I. Practical Implications’,Soil. Sci. Soc. Amer. Proc. 19, 267–271.Google Scholar
  64. Miller, E. E. and Miller, R. D.: 1956, ‘Physical Theory for Capillary Flow Phenomena’,J. Appl. Phys. 27, 324–332.Google Scholar
  65. Morton, F. I.: 1965, ‘Potential Evaporation and River Basin Evaporation’,J. Hydraul. Div. ASCE.91(HY6), 67–97.Google Scholar
  66. Morel-Seytoux, J. J. (ed.): 1989,Unsaturated Flow in Hydrologic Modelling, Theory and Practice, NATO ASI Series C, 275, Kluwer Acad. Publ., Dordrecht, Holland.Google Scholar
  67. National Research Council: 1977,Climate, Climatic Change and Water Supply, Studies of Geophysics, National Academy of Sciences, Washington.Google Scholar
  68. Nielsen, D. R., Biggar, J. W., and Erh, K. T.: 1973, ‘Spatial Variability of Field Measured Soil-Water Properties’,Hilgardia 42, 215–259.Google Scholar
  69. Ol'Dekop, E. M.: 1911,Ob isparenii s poverkhnosti rechnykh basseinov, (On evaporation from the surface of river basins), Trans. Meteorol. Observ. Iurevskovo. Univ. Tartu, 4.Google Scholar
  70. Peck, A. J., Luxmoore, R. J., and Stolzy, J. L.: 1977, ‘Effects of Spatial Variability of Soil Hydraulic Properties in Water Budget Modelling’,Water Resour. Res. 13, 348–354.Google Scholar
  71. Penman, H. L.: 1951,Vegetation and Hydrology, Technical Communication No. 53, Commonwealth Bureau of Soils, Harpenden.Google Scholar
  72. Philip, J. R.: 1957a, ‘The Theory of Infiltration: 1. The Infiltration Equation and its Solution’,Soil. Sci. 83, 345–357.Google Scholar
  73. Philip, J. R.: 1957b, ‘The Theory of Infiltration: 4. Sorptivity and Algebraic Infiltration Equations’,Soil. Sci. 84, 257–264.Google Scholar
  74. Philip, J. R.: 1960, ‘A Very General Class of Exact Solutions in Concentration-Dependent Diffusion’,Nature 185, 233.Google Scholar
  75. Philip, J. R.: 1969, ‘Theory of Infiltration’, in Ven Te Chow (ed.),Advances in Hydrosciences 5, 216–296.Google Scholar
  76. Pike, J. G.: 1964, ‘The Estimation of Annual Runoff from Meteorological Data in a Tropical Climate’,J. Hydrol. 2, 116–123.Google Scholar
  77. Polya, G.: 1957,How to Solve It, Doubleday and Co., Garden City, New York.Google Scholar
  78. Popov, E. G.: 1962, ‘Non-Uniformity of Surface Retention as a Factor of Runoff’,Bull. Int. Assn. Hydrol. Sc. 7, 21–26.Google Scholar
  79. Reichardt, K. and Libardi, P. L.: 1973,A New Equation for the Estimation of Soil-Water Diffusivity, Proc. of the Symp. on Isotopes and Radiation Techniques in Studies of Soil Physics, Irrigation and Drainage in Relation to Crop Production, IAEA, Vienna.Google Scholar
  80. Reichardt, K., Libardi, P. L., and Nielsen, D. R.: 1975, ‘Unsaturated Hydraulic Conductivity Determination by a Scaling Technique’,Soil. Sci. 120, 165–168.Google Scholar
  81. Richards, L. A.: 1931, ‘Capillarity Condition of Liquids Through Porous Mediums’,Physics, A Journal of General and Applied Physics, Amer. Phys. Soc. 1, 318–333.Google Scholar
  82. Rodriguez-Iturbe, I. and Gupta, V. K. (eds.): 1983, ‘Scale Problem in Hydrology’,J. Hydrol. 65, 1–400.Google Scholar
  83. Rowntree, P. R.: 1984, ‘Review of General Circulation Models for Predicting the Effects of Vegetation Change’, in E. R. C. Reynolds and F. B. Thompson (eds.),Forests, Climate, and Hydrology: Regional Impacts, United Nations University 1988, pp. 162–196.Google Scholar
  84. Sander, G. C., Kühnel, V., Brandyk, T., Dooge, J. C. I., and O'Kane, J. P. J.: 1986,Analytical Solutions to the Soil Moisture Flow Equations, Report No. 3, EEC/NBST Project CLI-038-EIR(H), The Role of Soil Moisture in Climate Modelling, Civil Eng. Dept., University College Dublin.Google Scholar
  85. Scheidegger, A. E.: 1960,The Physics of Flow Through Porous Media, Univ. of Toronto Press.Google Scholar
  86. Schreiber, P.: 1904, ‘Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa’,Z. Meteorol. 21(10).Google Scholar
  87. Sellers, P. J.: 1987, ‘Modeling Effects of Vegetation on Climate’, in R. E. Dickinson (ed.),The Geogphysiology of Amazonia. Vegetation and Climate Interactions, Wiley-Interscience Publ. pp. 297–344.Google Scholar
  88. Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: 1986, ‘A Simple Biosphere Model (SiB) for Use Within General Circulation Models’,J. Atmos. Sci. 43, 505–531.Google Scholar
  89. Sharma, M. L. and Luxmoore, R. J.: 1979, ‘Soil Spatial Variability and its Consequences on Simulated Water Balance’,Water Resour. Res. 15, 1567–1573.Google Scholar
  90. Sharma, M. L., Gander, G. A., and Hunt, C. G., 1980, ‘Spatial Variability of Infiltration in a Watershed’,J. of Hydrol. 45, 101–125.Google Scholar
  91. Shugart, H. H., Ya Antonovsky, M., Jarvis, P. G., and Sandford, A. P.: 1986, ‘CO2, Climatic Change and Forest Ecosystems’, in B. Balin, B. R. Doos, J. Jaeger and R. A. Warwick (eds.),The Greenhouse Effect, Climatic Change and Ecosystems, SCOPE 29, Wiley, Chichester, pp. 475–521.Google Scholar
  92. Simmons, C. S., Nielsen, D. R., and Biggar, J. W.: 1979, ‘Scaling of Field-Measured Soil-Water Properties’,Hilgardia 47, 77–173.Google Scholar
  93. Soil Survey Staff: 1960,Soil Classification: A Comprehensive System — 7th Approximation. U.S. Dept. of Agriculture, Soil Conservation Service, Washington, 265 pp.Google Scholar
  94. Strain, B. R. and Cure, J. D.: 1985,Direct Effect of Increasing Carbon Dioxide on Vegetation. DOE/ER-0238, US Dept. of Energy, Washington DC, U.S.A.Google Scholar
  95. Thornthwaite, C. W. and Mather, J. R.: 1955,The Water Balance, Publ. in Climatology VIII,1, Centestor, U.S.A. 86 pp.Google Scholar
  96. Troendle, C. A.: 1985, ‘Variable Source Area Models’, in M. G. Anderson and T. P. Burt (eds.),Hydrological Forecasting, Wiley-Interscience, pp. 347–403.Google Scholar
  97. Turc, L.: 1954, 1955, ‘Le bilan d'eau des sols. Relation entre la precipitation, l'evaporation et l'ecoulement’,Ann. Agron. 5, 491–569 and6, 5–131.Google Scholar
  98. Vauclin, M., Vachaud, G., and Imberon, J.: 1981,Spatial Variability of some Soil Physical Properties over One-Hectare Field Plot., AGU Chapman Conference, Fort Collins.Google Scholar
  99. Wagenet, R. J.: 1984,Measurement and Interpretation of Spatially Variable Leaching Processes. Proc. Int. Soc. Soil. Sci. and Soil. Sci. Soc. Amer. Workshop. Las Vegas. PUDOC Publs. Wageningen, pp. 209–236.Google Scholar
  100. Warrick, A. W., Mullen, G. J., and Nielsen, D. R.: 1977, ‘Scaling Field-Measured Soil Hydraulic Properties Using a Similar Media Concept’,Water Resour. Res. 13, 355–362.Google Scholar
  101. W.M.O.: 1975,Intercomparison of Conceptual Models Used in Operational Hydrological Forecasting. Operational Report No. 7, W.M.O., Geneva.Google Scholar
  102. Wood, E. F., Sivapalan, M., Beven, K., and Band, L.: 1987,Effects of Spatial Variability and Scale with Implications to Hydrologic Modelling, Proceedings of U.S.A.-Japan Seminar on Hydrology, Hawaii.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • V. Kuhnel
    • 1
  • J. C. I. Dooge
    • 1
  • J. P. J. O'Kane
    • 1
  • R. J. Romanowicz
    • 1
  1. 1.Center for Water Resources Research Department of Civil EngineeringUniversity CollegeDublinIreland

Personalised recommendations