Acta Mathematica Hungarica

, Volume 50, Issue 1–2, pp 21–31 | Cite as

Strong summability and convergence of subsequences of orthogonal series

  • H. Schwinn
Article
  • 17 Downloads

Keywords

Orthogonal Series Strong Summability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. P. Agnew, Equivalence of methods for evaluation of sequences,Proc. Amer. Math. Soc.,3 (1932), 550–556.Google Scholar
  2. [2]
    G. Alexits,Konvergenzprobleme der Orthogonalreihen (Berlin, 1960).Google Scholar
  3. [3]
    V. A. Bolgov, The summation of orthogonal series by linear methods,Math. Notes,4 (1968). 907–911.Google Scholar
  4. [4]
    S. Borgen, Über die (C, 1)-Summierbarkeit von Reihen orthogonaler Funktionen,Math. Ann.,98 (1928), 125–150.CrossRefGoogle Scholar
  5. [5]
    J. A. Fridy, Tauberian theorems via block dominated matrices,Pacific, J. Math.,81 (1979), 81–91.Google Scholar
  6. [6]
    G. H. Hardy,Divergent series (Oxford, 1947).Google Scholar
  7. [7]
    S. Kaczmarz, Über Reihen von allgemeinen Orthogonalfunktionen,Math. Ann.,96 (1927), 148–151.CrossRefGoogle Scholar
  8. [8]
    A. Kolmogoroff, Une contribution à l'étude de la convergence des séries de Fourier,Fund. Math.,5 (1924), 96–97.Google Scholar
  9. [9]
    L. Leindler, On the strong and very strong summability and approximation of orthogonal series by generalized Abel method,Studia Sci. Math. Hungar.,16 (1981), 35–43.Google Scholar
  10. [10]
    J. Meder, On the very strong Riesz-summability of orthogonal series,Studia Math.,20 (1961), 285–300.Google Scholar
  11. [11]
    D. E. Menchoff, On the summability of orthogonal series,Trudy Moscow Math. Obs.,10 (1961), 351–418 (in Russian).Google Scholar
  12. [12]
    F. Móricz, A note on the strongT-summation of orthogonal series,Acta Sci. Math. (Szeged),30 (1969), 69–76.Google Scholar
  13. [13]
    H. Schwinn, Über die Konvergenz und Summierbarkeit von Teilfolgen allgemeiner Orthogonalreihen,Acta Math. Acad. Sci. Hung.,37 (1981), 373–380.CrossRefGoogle Scholar
  14. [14]
    G. Sunouchi, On the strong summability of orthogonal series,Acta Sci. Math. (Szeged),27 (1966), 71–76.Google Scholar
  15. [15]
    K. Zeller, W. Beekmann,Theorie der Limitierungsverfahren (Berlin—Heidelberg—New York, 1970).Google Scholar
  16. [16]
    O. A. Ziza, Summation of orthogonal series by the methods (ϕ, λ),Math. Notes,25 (1979), 91–102.Google Scholar
  17. [17]
    O. A. Ziza, On the application of summability methods of class (ϕ, λ) to orthogonal series,Soviet Math. Dokl.,20 (1979), 14–18.Google Scholar
  18. [18]
    A. Zygmund, Sur l'application de la première moyenne arithmétique dans la théorie des séries de fonctions orthogonales,Fund. Math.,10 (1927), 356–362.Google Scholar
  19. [19]
    A. Zygmund, Sur la sommation des séries de fonctions orthogonales,Bull. Intern. Acad. Polon. Sci. Lettres (Cracovie), série A (1927), 295–312.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • H. Schwinn
    • 1
  1. 1.Mathematisches InstitutTechnische Universität BerlinBerlin 12

Personalised recommendations