Advertisement

Acta Mathematica Hungarica

, Volume 50, Issue 1–2, pp 21–31 | Cite as

Strong summability and convergence of subsequences of orthogonal series

  • H. Schwinn
Article
  • 17 Downloads

Keywords

Orthogonal Series Strong Summability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. P. Agnew, Equivalence of methods for evaluation of sequences,Proc. Amer. Math. Soc.,3 (1932), 550–556.Google Scholar
  2. [2]
    G. Alexits,Konvergenzprobleme der Orthogonalreihen (Berlin, 1960).Google Scholar
  3. [3]
    V. A. Bolgov, The summation of orthogonal series by linear methods,Math. Notes,4 (1968). 907–911.Google Scholar
  4. [4]
    S. Borgen, Über die (C, 1)-Summierbarkeit von Reihen orthogonaler Funktionen,Math. Ann.,98 (1928), 125–150.CrossRefGoogle Scholar
  5. [5]
    J. A. Fridy, Tauberian theorems via block dominated matrices,Pacific, J. Math.,81 (1979), 81–91.Google Scholar
  6. [6]
    G. H. Hardy,Divergent series (Oxford, 1947).Google Scholar
  7. [7]
    S. Kaczmarz, Über Reihen von allgemeinen Orthogonalfunktionen,Math. Ann.,96 (1927), 148–151.CrossRefGoogle Scholar
  8. [8]
    A. Kolmogoroff, Une contribution à l'étude de la convergence des séries de Fourier,Fund. Math.,5 (1924), 96–97.Google Scholar
  9. [9]
    L. Leindler, On the strong and very strong summability and approximation of orthogonal series by generalized Abel method,Studia Sci. Math. Hungar.,16 (1981), 35–43.Google Scholar
  10. [10]
    J. Meder, On the very strong Riesz-summability of orthogonal series,Studia Math.,20 (1961), 285–300.Google Scholar
  11. [11]
    D. E. Menchoff, On the summability of orthogonal series,Trudy Moscow Math. Obs.,10 (1961), 351–418 (in Russian).Google Scholar
  12. [12]
    F. Móricz, A note on the strongT-summation of orthogonal series,Acta Sci. Math. (Szeged),30 (1969), 69–76.Google Scholar
  13. [13]
    H. Schwinn, Über die Konvergenz und Summierbarkeit von Teilfolgen allgemeiner Orthogonalreihen,Acta Math. Acad. Sci. Hung.,37 (1981), 373–380.CrossRefGoogle Scholar
  14. [14]
    G. Sunouchi, On the strong summability of orthogonal series,Acta Sci. Math. (Szeged),27 (1966), 71–76.Google Scholar
  15. [15]
    K. Zeller, W. Beekmann,Theorie der Limitierungsverfahren (Berlin—Heidelberg—New York, 1970).Google Scholar
  16. [16]
    O. A. Ziza, Summation of orthogonal series by the methods (ϕ, λ),Math. Notes,25 (1979), 91–102.Google Scholar
  17. [17]
    O. A. Ziza, On the application of summability methods of class (ϕ, λ) to orthogonal series,Soviet Math. Dokl.,20 (1979), 14–18.Google Scholar
  18. [18]
    A. Zygmund, Sur l'application de la première moyenne arithmétique dans la théorie des séries de fonctions orthogonales,Fund. Math.,10 (1927), 356–362.Google Scholar
  19. [19]
    A. Zygmund, Sur la sommation des séries de fonctions orthogonales,Bull. Intern. Acad. Polon. Sci. Lettres (Cracovie), série A (1927), 295–312.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • H. Schwinn
    • 1
  1. 1.Mathematisches InstitutTechnische Universität BerlinBerlin 12

Personalised recommendations