Acta Mathematica Hungarica

, Volume 51, Issue 3–4, pp 421–436 | Cite as

Markov type estimates for derivatives of polynomials of special type

  • T. Erdélyi
Article

Keywords

Type Estimate Markov Type Markov Type Estimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. S. Videnskii, Extremal estimates for the derivative of a trigonometrical polynomial on an interval shorter than the period (Russ.),Dokl. Akad. Nauk USSR,130 (1960), 13–16.Google Scholar
  2. [2]
    J. Szabados, Bernstein and Markov type estimates for derivative of a polynomial with real zeros, inFunctional Analysis and Approximation, Birkhauser Verlag (Basel, 1981), 177–188.Google Scholar
  3. [3]
    T. Erdélyi-J. Szabados, On trigonometric polynomials with positive coefficients,Studia Sci. Math. Hungar.,23 (1987).Google Scholar
  4. [4]
    T. Erdélyi-J. Szabados, On polynomials with positive coefficients,J. Approximation Theory,53 (1988).Google Scholar
  5. [5]
    P. Borwein, Markov's inequality for polynomials with real zeros,Proceedings of the Amer. Math. Soc.,93 (1985), 43–47.Google Scholar
  6. [6]
    T. Erdélyi, Pointwise estimates for derivatives of polynomials with restricted zeros,Proceedings of the Alfred Haar Memorial Conference held in Budapest, 1985, Vol. 49, Nort Holland (Amsterdam-Budapest, 1987), 329–343.Google Scholar
  7. [7]
    T. Erdélyi, Pointwise estimates for the derivatives of a polynomial with real zeros,Acta Math. Hung.,49 (1987), 219–235.Google Scholar
  8. [8]
    T. Erdélyi, Markov and Bernstein type inequalities for certain classes of constrained trigonometric polynomials on an interval shorter than the period,Studia Sci. Math. Hungar. (to appear).Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • T. Erdélyi
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations