On a general localization theorem and some applications in the theory of rational approximation

  • V. A. Popov
  • J. Szabados
Article

Keywords

General Localization Rational Approximation Localization Theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Freud, Über die Approximation reeller Funktionen durch rationale gebrochene Funktionen,Acta Math. Acad. Sci. Hung.,17 (1966), pp. 313–324.Google Scholar
  2. [2]
    G. Freud-J. Szabados, Rational approximation tox α,Acta Math. Acad. Sci. Hung.,18 (1967), pp. 393–399.Google Scholar
  3. [3]
    J. Szabados, Generalization of two theorems of G. Freud concerning the rational approximation,Studia Sci. Math. Hung.,2 (1967), pp. 73–80.Google Scholar
  4. [4]
    V. A. Popov, On rational approximation of functions in the classV r,Acta Math. Acad. Sci. Hung.,25 (1974), pp. 61–65.Google Scholar
  5. [5]
    A. P. Bulanov, Rational approximation of convex functions with given modulus of continuity (Russian),Mat. Sbornik,84 (126):3 (1971), pp. 476–494.Google Scholar
  6. [6]
    A. A. Gončar, On the degree of rational approximation of continuous functions with characteristic singularity (Russian),Mat. Sbornik,73 (115) (1967), pp. 630–638.Google Scholar
  7. [7]
    D. J. Newman, Rational approximation to ⋎x⋎,Michigan Mat. Journal,11 (1964), pp. 11–14.Google Scholar
  8. [8]
    A. A. Gončar, Estimates for the growth of rational functions and some applications (Russian),Mat. Sbornik,72 (114):3 (1967), pp. 489–503.Google Scholar
  9. [9]
    J. Szabados, Rational approximation of analytic functions with finite number of singularities on the real axis,Acta Math. Acad. Sci. Hung.,20 (1969), pp. 159–167.Google Scholar
  10. [10]
    P. Szüsz-P. Turán, On the constructive theory of functions III,Studia Sci. Math. Hung.,1 (1966), pp. 315–322.Google Scholar

Copyright information

© Akadémiai Kiadó 1974

Authors and Affiliations

  • V. A. Popov
    • 1
  • J. Szabados
    • 2
  1. 1.Mathematical Institute of the Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations